TU Darmstadt / ULB / TUbiblio

On the topology and geometry of Kac-Moody groups

Mars, Andreas (2011):
On the topology and geometry of Kac-Moody groups.
TU Darmstadt, [Online-Edition: urn:nbn:de:tuda-tuprints-24964],
[Ph.D. Thesis]

Abstract

Die vorliegende Arbeit beschäftigt sich mit topologischen und geometrischen Fragestellungen innerhalb der Theorie der Kac-Moody-Gruppen. Diese sind natürliche Verallgemeinerungen von Chevalley-Gruppen über kommutativen Ringen mit Eins. Im Laufe des Promotionsprojektes war die Beantwortung folgender Fragestellungen von zentraler Bedeutung. (1) Sei G eine Kac-Moody-Gruppe, definiert über einem topologischen Körper. Macht die Kac-Peterson-Topologie auf G die Gruppe zu einer Hausdorffschen topologischen Gruppe? Diese Frage ergab sich natürlicherweise aus einer Arbeit von Glöckner, Gramlich und Hartnick. Dort wurde gezeigt, dass die Kac-Peterson-Topologie reelle und komplexe Kac-Moody-Gruppen zu topologischen Gruppen macht. Dieses Resultat wird hier verallgemeinert. (2) Seien G, G' Kac-Moody-Gruppen über einem Integritätsbereich R. Ist es möglich, die Isomorphismen zwischen G und G' zu klassifizieren? Falls zwei Kac-Moody-Gruppen isomorph sind, sind dann auch die zugehörigen Wurzeldaten isomorph? Wie verhalten sich die Automorphismen von G(R) im Vergleich zu denen von G(F), wobei F der Quotientenkörper von R ist? In einer Arbeit von Caprace wurden die Isomorphismen zwischen zwei Kac-Moody-Gruppen über Körpern bestimmt. Der Beweis benutzt die Wirkung auf dem zugehörigen Zwillingsgebäude. Ich verwende, dass Kac-Moody-Gruppen über Integritätsbereichen auf den Gebäuden der Kac-Moody-Gruppen über den Quotientenkörpern wirken und bestimme die Isomorphismen mit Hilfe eines lokal-zu-global-Arguments. (3) Ist das natürliche Zwillingsgebäude einer Kac-Moody-Gruppe G (ausgestattet mit der Kac-Peterson-Topologie) über einem topologischen Körper F ein topologisches Zwillingsgebäude im Sinne von Hartnick? Falls ja, wie sieht die topologische Bahnenstruktur spezieller Untergruppen von G auf dem Gebäude aus? Im sphärischen Fall wurde von Burns und Spatzier ein Zusammenhang zwischen Lie-Gruppen und sphärischen topologischen Gebäuden nachgewiesen. Eine Arbeit von Hartnick verallgemeinert die Resultate, welche wiederum hier in noch allgemeinerem Kontext bewiesen werden. Diese Fragen werden in der vorliegenden Arbeit diskutiert und gelöst, einige weiterführende Fragestellungen werden formuliert und mögliche Verallgemeinerungen der präsentierten Resultate skizziert.

Item Type: Ph.D. Thesis
Erschienen: 2011
Creators: Mars, Andreas
Title: On the topology and geometry of Kac-Moody groups
Language: English
Abstract:

Die vorliegende Arbeit beschäftigt sich mit topologischen und geometrischen Fragestellungen innerhalb der Theorie der Kac-Moody-Gruppen. Diese sind natürliche Verallgemeinerungen von Chevalley-Gruppen über kommutativen Ringen mit Eins. Im Laufe des Promotionsprojektes war die Beantwortung folgender Fragestellungen von zentraler Bedeutung. (1) Sei G eine Kac-Moody-Gruppe, definiert über einem topologischen Körper. Macht die Kac-Peterson-Topologie auf G die Gruppe zu einer Hausdorffschen topologischen Gruppe? Diese Frage ergab sich natürlicherweise aus einer Arbeit von Glöckner, Gramlich und Hartnick. Dort wurde gezeigt, dass die Kac-Peterson-Topologie reelle und komplexe Kac-Moody-Gruppen zu topologischen Gruppen macht. Dieses Resultat wird hier verallgemeinert. (2) Seien G, G' Kac-Moody-Gruppen über einem Integritätsbereich R. Ist es möglich, die Isomorphismen zwischen G und G' zu klassifizieren? Falls zwei Kac-Moody-Gruppen isomorph sind, sind dann auch die zugehörigen Wurzeldaten isomorph? Wie verhalten sich die Automorphismen von G(R) im Vergleich zu denen von G(F), wobei F der Quotientenkörper von R ist? In einer Arbeit von Caprace wurden die Isomorphismen zwischen zwei Kac-Moody-Gruppen über Körpern bestimmt. Der Beweis benutzt die Wirkung auf dem zugehörigen Zwillingsgebäude. Ich verwende, dass Kac-Moody-Gruppen über Integritätsbereichen auf den Gebäuden der Kac-Moody-Gruppen über den Quotientenkörpern wirken und bestimme die Isomorphismen mit Hilfe eines lokal-zu-global-Arguments. (3) Ist das natürliche Zwillingsgebäude einer Kac-Moody-Gruppe G (ausgestattet mit der Kac-Peterson-Topologie) über einem topologischen Körper F ein topologisches Zwillingsgebäude im Sinne von Hartnick? Falls ja, wie sieht die topologische Bahnenstruktur spezieller Untergruppen von G auf dem Gebäude aus? Im sphärischen Fall wurde von Burns und Spatzier ein Zusammenhang zwischen Lie-Gruppen und sphärischen topologischen Gebäuden nachgewiesen. Eine Arbeit von Hartnick verallgemeinert die Resultate, welche wiederum hier in noch allgemeinerem Kontext bewiesen werden. Diese Fragen werden in der vorliegenden Arbeit diskutiert und gelöst, einige weiterführende Fragestellungen werden formuliert und mögliche Verallgemeinerungen der präsentierten Resultate skizziert.

Divisions: 04 Department of Mathematics > Algebra
04 Department of Mathematics
Date Deposited: 22 Mar 2011 11:37
Official URL: urn:nbn:de:tuda-tuprints-24964
License: Creative Commons: Attribution-Noncommercial-No Derivative Works 3.0
Referees: Gramlich, PD dr. Ralf and Scheithauer, Prof. Dr. Nils and Kramer, Prof. Dr. Linus
Refereed / Verteidigung / mdl. Prüfung: 3 February 2011
Alternative Abstract:
Alternative abstract Language
This thesis deals with topological and geometrical questions in the category of Kac-Moody groups. These groups arise naturally as generalisation of Chevalley groups over commutative rings with identity. The main questions to be answered are the following. (1) Let G be a Kac-Moody group defined over a topological field. Is G, equipped with the Kac-Peterson topology, a topological group? (2) Let G and G' be Kac-Moody groups defined over an integral domain R. It is possible to classify the isomorphisms between G and G'? If the two groups are isomorphic, are the the underlying root data isomorphic as well? How do the isomorphisms between G(R) and G(F) relate, where F is the field of fractions of R? (3) Let G be a Kac-Moody group equipped with the Kac-Peterson topology. Is the canonical twin building associated to G, equipped with the quotient topology, a topological twin building in the sense of Hartnick? It is possible to compute the topological orbit structure of some special subgroups of G?English
Export:
Suche nach Titel in: TUfind oder in Google

Optionen (nur für Redakteure)

View Item View Item