TU Darmstadt / ULB / TUbiblio

Expression of the recombinant bacterial outer surface protein A in tobacco chloroplasts leads to thylakoid localization and loss of photosynthesis.

Hennig, A. ; Bonfig, K. ; Roitsch, T. ; Warzecha, Heribert (2007)
Expression of the recombinant bacterial outer surface protein A in tobacco chloroplasts leads to thylakoid localization and loss of photosynthesis.
In: The FEBS journal, 274 (21)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Bacterial lipoproteins play crucial roles in host-pathogen interactions and pathogenesis and are important targets for the immune system. A prominent example is the outer surface protein A (OspA) of Borrelia burgdorferi, which has been efficiently used as a vaccine for the prevention of Lyme disease. In a previous study, OspA could be produced in tobacco chloroplasts in a lipidated and immunogenic form. To further explore the potential of chloroplasts for the production of bacterial lipoproteins, the role of the N-terminal leader sequence was investigated. The amount of recombinant OspA could be increased up to ten-fold by the variation of the insertion site in the chloroplast genome. Analysis of OspA mutants revealed that replacement of the invariant cysteine residue as well as deletion of the leader sequence abolishes palmitolyation of OspA. Also, decoration of OspA with an N-terminal eukaryotic lipidation motif does not lead to palmitoylation in chloroplasts. Strikingly, the bacterial signal peptide of OspA efficiently targets the protein to thylakoids, and causes a mutant phenotype. Plants accumulating OspA at 10% total soluble protein could not grow without exogenously supplied sugars and rapidly died after transfer to soil under greenhouse conditions. The plants were found to be strongly affected in photosystem II, as revealed by the analyses of temporal and spatial dynamics of photosynthetic activity by chlorophyll fluorescence imaging. Thus, overexpression of OspA in chloroplasts is limited by its concentration-dependent interference with essential functions of chloroplastic membranes required for primary metabolism.

Typ des Eintrags: Artikel
Erschienen: 2007
Autor(en): Hennig, A. ; Bonfig, K. ; Roitsch, T. ; Warzecha, Heribert
Art des Eintrags: Bibliographie
Titel: Expression of the recombinant bacterial outer surface protein A in tobacco chloroplasts leads to thylakoid localization and loss of photosynthesis.
Sprache: Englisch
Publikationsjahr: 2007
Titel der Zeitschrift, Zeitung oder Schriftenreihe: The FEBS journal
Jahrgang/Volume einer Zeitschrift: 274
(Heft-)Nummer: 21
Kurzbeschreibung (Abstract):

Bacterial lipoproteins play crucial roles in host-pathogen interactions and pathogenesis and are important targets for the immune system. A prominent example is the outer surface protein A (OspA) of Borrelia burgdorferi, which has been efficiently used as a vaccine for the prevention of Lyme disease. In a previous study, OspA could be produced in tobacco chloroplasts in a lipidated and immunogenic form. To further explore the potential of chloroplasts for the production of bacterial lipoproteins, the role of the N-terminal leader sequence was investigated. The amount of recombinant OspA could be increased up to ten-fold by the variation of the insertion site in the chloroplast genome. Analysis of OspA mutants revealed that replacement of the invariant cysteine residue as well as deletion of the leader sequence abolishes palmitolyation of OspA. Also, decoration of OspA with an N-terminal eukaryotic lipidation motif does not lead to palmitoylation in chloroplasts. Strikingly, the bacterial signal peptide of OspA efficiently targets the protein to thylakoids, and causes a mutant phenotype. Plants accumulating OspA at 10% total soluble protein could not grow without exogenously supplied sugars and rapidly died after transfer to soil under greenhouse conditions. The plants were found to be strongly affected in photosystem II, as revealed by the analyses of temporal and spatial dynamics of photosynthetic activity by chlorophyll fluorescence imaging. Thus, overexpression of OspA in chloroplasts is limited by its concentration-dependent interference with essential functions of chloroplastic membranes required for primary metabolism.

Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie > Plant Biotechnology and Metabolic Engineering
?? fb10_botanik ??
10 Fachbereich Biologie
Hinterlegungsdatum: 17 Mär 2011 10:57
Letzte Änderung: 05 Mär 2013 09:46
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen