TU Darmstadt / ULB / TUbiblio

Functional analysis of the gas vesicle gene cluster of the halophilic archaeon Haloferax mediterranei defines the vac-region boundary and suggests a regulatory role for the gvpD gene or its product.

Englert, C. ; Wanner, G. ; Pfeifer, Felicitas (1992)
Functional analysis of the gas vesicle gene cluster of the halophilic archaeon Haloferax mediterranei defines the vac-region boundary and suggests a regulatory role for the gvpD gene or its product.
In: Molecular microbiology, 6 (23)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

A series of deletions introduced into the gvp gene cluster of Haloferax mediterranei, comprising 14 genes involved in gas vesicle synthesis (mc-vac-region), was investigated by transformation experiments. Gas vesicle production and the expression of the gvpA gene encoding the major gas vesicle protein, GvpA, was monitored in each Haloferax volcanii transformant. Whereas transformants containing the entire mc-vac-region produced gas vesicles (Vac+), various deletions in the region 5' to gvpA (encompassing gvpD-gvpM) or 3' to gvpA (containing gvpC, gvpN and gvpO) revealed Vac- transformants. All these transformants expressed gvpA and contained the 8 kDa GvpA protein as shown by Western analysis. However, transformants containing the gvpA gene by itself indicated a lower level of GvpA than observed with each of the other transformants. None of these transformants containing deletion constructs assembled the GvpA protein into gas vesicles. In contrast, transformants containing a construct carrying a 918 bp deletion internal to gvpD exhibited a tremendous gas vesicle overproduction, suggesting a regulatory role for the gvpD gene or its product. This is the first assignment of a functional role for one of the 13 halobacterial gvp genes found in addition to gvpA that are involved in the synthesis of this unique structure.

Typ des Eintrags: Artikel
Erschienen: 1992
Autor(en): Englert, C. ; Wanner, G. ; Pfeifer, Felicitas
Art des Eintrags: Bibliographie
Titel: Functional analysis of the gas vesicle gene cluster of the halophilic archaeon Haloferax mediterranei defines the vac-region boundary and suggests a regulatory role for the gvpD gene or its product.
Sprache: Englisch
Publikationsjahr: 1992
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Molecular microbiology
Jahrgang/Volume einer Zeitschrift: 6
(Heft-)Nummer: 23
Kurzbeschreibung (Abstract):

A series of deletions introduced into the gvp gene cluster of Haloferax mediterranei, comprising 14 genes involved in gas vesicle synthesis (mc-vac-region), was investigated by transformation experiments. Gas vesicle production and the expression of the gvpA gene encoding the major gas vesicle protein, GvpA, was monitored in each Haloferax volcanii transformant. Whereas transformants containing the entire mc-vac-region produced gas vesicles (Vac+), various deletions in the region 5' to gvpA (encompassing gvpD-gvpM) or 3' to gvpA (containing gvpC, gvpN and gvpO) revealed Vac- transformants. All these transformants expressed gvpA and contained the 8 kDa GvpA protein as shown by Western analysis. However, transformants containing the gvpA gene by itself indicated a lower level of GvpA than observed with each of the other transformants. None of these transformants containing deletion constructs assembled the GvpA protein into gas vesicles. In contrast, transformants containing a construct carrying a 918 bp deletion internal to gvpD exhibited a tremendous gas vesicle overproduction, suggesting a regulatory role for the gvpD gene or its product. This is the first assignment of a functional role for one of the 13 halobacterial gvp genes found in addition to gvpA that are involved in the synthesis of this unique structure.

Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie > Microbiology and Archaea
?? fb10_mikrobiologie ??
10 Fachbereich Biologie
Hinterlegungsdatum: 14 Feb 2011 10:56
Letzte Änderung: 05 Mär 2013 09:45
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen