Vogel-Höpker, A. and Momose, T. and Rohrer, H. and Yasuda, K. and Ishihara, L. and Rapaport, D. H. (2000):
Multiple functions of fibroblast growth factor-8 (FGF-8) in chick eye development.
In: Mechanisms of development, 94 (1-2), pp. 25-36. ISSN 0925-4773,
[Article]
Abstract
Fibroblast growth factor-8 (FGF-8) is an important signaling molecule in the generation and patterning of the midbrain, tooth, and limb. In this study we show that it is also involved in eye development. In the chick, Fgf-8 transcripts first appear in the distal optic vesicle when it contacts the head ectoderm. Subsequently Fgf-8 expression increases and becomes localized to the central area of the presumptive neural retina (NR) only. Application of FGF-8 has two main effects on the eye. First, it converts presumptive retinal pigment epithelium (RPE) into NR. This is apparent by the failure to express Bmp-7 and Mitf (a marker gene for the RPE) in the outer layer of the optic cup, coupled with the induction of NR genes, such as Rx, Sgx-1 and Fgf-8 itself. The induced retina displays the typical multilayered cytoarchitecture and expresses late neuronal differentiation markers such as synaptotagmin and islet-1. The second effect of FGF-8 exposure is the induction of both lens formation and lens fiber differentiation. This is apparent by the expression of a lens specific marker, L-Maf, and by morphological changes of lens cells. These results suggest that FGF-8 plays a role in the initiation and differentiation of neural retina and lens.
Item Type: | Article |
---|---|
Erschienen: | 2000 |
Creators: | Vogel-Höpker, A. and Momose, T. and Rohrer, H. and Yasuda, K. and Ishihara, L. and Rapaport, D. H. |
Title: | Multiple functions of fibroblast growth factor-8 (FGF-8) in chick eye development. |
Language: | English |
Abstract: | Fibroblast growth factor-8 (FGF-8) is an important signaling molecule in the generation and patterning of the midbrain, tooth, and limb. In this study we show that it is also involved in eye development. In the chick, Fgf-8 transcripts first appear in the distal optic vesicle when it contacts the head ectoderm. Subsequently Fgf-8 expression increases and becomes localized to the central area of the presumptive neural retina (NR) only. Application of FGF-8 has two main effects on the eye. First, it converts presumptive retinal pigment epithelium (RPE) into NR. This is apparent by the failure to express Bmp-7 and Mitf (a marker gene for the RPE) in the outer layer of the optic cup, coupled with the induction of NR genes, such as Rx, Sgx-1 and Fgf-8 itself. The induced retina displays the typical multilayered cytoarchitecture and expresses late neuronal differentiation markers such as synaptotagmin and islet-1. The second effect of FGF-8 exposure is the induction of both lens formation and lens fiber differentiation. This is apparent by the expression of a lens specific marker, L-Maf, and by morphological changes of lens cells. These results suggest that FGF-8 plays a role in the initiation and differentiation of neural retina and lens. |
Journal or Publication Title: | Mechanisms of development |
Journal volume: | 94 |
Number: | 1-2 |
Divisions: | 10 Department of Biology > Developmental Biology and Neurogenetics ?? fb10_zoologie ?? 10 Department of Biology |
Date Deposited: | 24 Jan 2011 10:41 |
Corresponding Links: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
![]() |
Send an inquiry |
Options (only for editors)
![]() |
Show editorial Details |