TU Darmstadt / ULB / TUbiblio

The single cysteine residue of the Sud protein is required for its function as a polysulfide-sulfur transferase in Wolinella succinogenes.

Klimmek, O. ; Steiner, T. ; Pisa, R. ; Simon, J. ; Kröger, A. (1999)
The single cysteine residue of the Sud protein is required for its function as a polysulfide-sulfur transferase in Wolinella succinogenes.
In: European journal of biochemistry / FEBS, 263 (1)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The periplasmic Sud protein which is induced in Wolinella succinogenes growing by polysulfide respiration, has been previously proposed to serve as a polysulfide binding protein and to transfer polysulfide-sulfur to the active site of polysulfide reductase [Klimmek, O, Kreis, V., Klein, C., Simon, J., Wittershagen, A. & Kröger, A. (1998) Eur. J. Biochem. 253, 263-269.]. The results presented in this communication suggest that polysulfide-sulfur is covalently bound to the single cysteine residue (Cys109) of the Sud monomer, and that Cys109 is required for tight binding of polysulfide-sulfur and for sulfur transfer. A modified Sud protein [(C109S)Sud-His6] in which the cysteine residue was replaced by serine, did not catalyze sulfur transfer from polysulfide to cyanide and did not stimulate electron transport to polysulfide, in contrast to Sud-His6. The polysulfide-sulfur bound to (C109S)Sud-His6 was fully removed upon dialysis against sulfide. After this treatment, Sud-His6 retained one sulfur atom per monomer; thiocyanate was formed upon addition of cyanide to the preparation. After incubation of Sud-His6 with polysulfide, a proportion of the Sud-His6 monomers carried one or two sulfur atoms, as shown by matrix-assisted laser desorption ionization mass spectrometry. The sulfur atoms were absent from monomers derived from Sud-His6 treated with cyanide and from (C109S)Sud-His6 incubated with polysulfide.

Typ des Eintrags: Artikel
Erschienen: 1999
Autor(en): Klimmek, O. ; Steiner, T. ; Pisa, R. ; Simon, J. ; Kröger, A.
Art des Eintrags: Bibliographie
Titel: The single cysteine residue of the Sud protein is required for its function as a polysulfide-sulfur transferase in Wolinella succinogenes.
Sprache: Englisch
Publikationsjahr: 1999
Titel der Zeitschrift, Zeitung oder Schriftenreihe: European journal of biochemistry / FEBS
Jahrgang/Volume einer Zeitschrift: 263
(Heft-)Nummer: 1
Kurzbeschreibung (Abstract):

The periplasmic Sud protein which is induced in Wolinella succinogenes growing by polysulfide respiration, has been previously proposed to serve as a polysulfide binding protein and to transfer polysulfide-sulfur to the active site of polysulfide reductase [Klimmek, O, Kreis, V., Klein, C., Simon, J., Wittershagen, A. & Kröger, A. (1998) Eur. J. Biochem. 253, 263-269.]. The results presented in this communication suggest that polysulfide-sulfur is covalently bound to the single cysteine residue (Cys109) of the Sud monomer, and that Cys109 is required for tight binding of polysulfide-sulfur and for sulfur transfer. A modified Sud protein [(C109S)Sud-His6] in which the cysteine residue was replaced by serine, did not catalyze sulfur transfer from polysulfide to cyanide and did not stimulate electron transport to polysulfide, in contrast to Sud-His6. The polysulfide-sulfur bound to (C109S)Sud-His6 was fully removed upon dialysis against sulfide. After this treatment, Sud-His6 retained one sulfur atom per monomer; thiocyanate was formed upon addition of cyanide to the preparation. After incubation of Sud-His6 with polysulfide, a proportion of the Sud-His6 monomers carried one or two sulfur atoms, as shown by matrix-assisted laser desorption ionization mass spectrometry. The sulfur atoms were absent from monomers derived from Sud-His6 treated with cyanide and from (C109S)Sud-His6 incubated with polysulfide.

Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie > Microbial Energy Conversion and Biotechnology
?? fb10_mikrobiologie ??
10 Fachbereich Biologie
Hinterlegungsdatum: 07 Dez 2010 15:06
Letzte Änderung: 05 Mär 2013 09:42
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen