TU Darmstadt / ULB / TUbiblio

Integration und Einsatz metallischer Nanodrahtarrays in Mikrosysteme für die Gasfluss-Sensorik

Quednau, Sebastian :
Integration und Einsatz metallischer Nanodrahtarrays in Mikrosysteme für die Gasfluss-Sensorik.
Technische Universität Darmstadt
[Masterarbeit], (2010)

Kurzbeschreibung (Abstract)

Diese Arbeit beschäftigt sich mit der Integration von Nanodrahtarrays in ein Mikrosystem, das zur Gasflussmessung eingesetzt werden soll. Dabei liegt der Fokus mehr auf der Entwicklung eines Prozesses zur Integration als auf der Optimierung der Funktion des Mikrosystems als Gasflusssensor. Der Vergleich der verschiedenen Messprinzipien für mikrotechnische Gasflusssensoren setzt das hier verwendete kalorimetrische Messprinzip in Kontext. Als Temperaturmesselemente kommen Nanodrahtarrays wegen ihres hohen Oberflächen/Volumenverhältnis vom und der dadurch erwarteten Verringerung der Ansprechzeit des Gasflusssensors zum Einsatz. Anschließend werden die Nanodrahtarrays beschrieben und mit Hilfe geometrischer Abschätzungen charakterisiert. Die Gegenüberstellung einer Vielzahl verschiedener Prozesse zur Integration von Nanodrahtarrays mündet im Konzept für ein entsprechendes Mikrosystem. Mit Hilfe numerischer Berechnungen wird das System für seine Funktion als Gasflusssensor optimiert. Ein besonderes Augenmerk dieser Arbeit liegt auf der Modellierung des Gasflusses durch die Nanodrahtarrays und dem Temperaturaustausch zwischen Gas und Nanodrähten. Dabei wird der verwendete Finite Volumen Methode (FVM) Algorithmus speziell an Gasflüsse in nanoskaligen Strukturen angepasst. Die Ergebnisse der Betrachtung zeigen das Potential der Nanodrähte in der Gasflusssensorik auf. Die Simulationsergebnisse legen nahe, dass die derzeitige Form der Nanodrahtarrays nicht das volle Potential der Nanodrähte ausschöpft. Die Reaktionszeit auf einen Temperatursprung liegt bei einzelnen Nanodrähten Bereich von < 1 µs. Die Reaktionszeit des Arrays ist mit etwa einer Millisekunde wesentlich höher. Die Durchführung des entwickelten Integrationsprozesses resultiert in der erfolgreichen Herstellung des konzipierten Mikrosystems. Den Abschluss der Arbeit bilden eine kritische Betrachtung der erzielten Ergebnisse sowie ein Ausblick darauf, wie in die Eigenschaften der Nanodrähte in zukünftigen Generationen von Gasflusssensoren besser genutzt werden können.

Typ des Eintrags: Masterarbeit
Erschienen: 2010
Autor(en): Quednau, Sebastian
Titel: Integration und Einsatz metallischer Nanodrahtarrays in Mikrosysteme für die Gasfluss-Sensorik
Sprache: Deutsch
Kurzbeschreibung (Abstract):

Diese Arbeit beschäftigt sich mit der Integration von Nanodrahtarrays in ein Mikrosystem, das zur Gasflussmessung eingesetzt werden soll. Dabei liegt der Fokus mehr auf der Entwicklung eines Prozesses zur Integration als auf der Optimierung der Funktion des Mikrosystems als Gasflusssensor. Der Vergleich der verschiedenen Messprinzipien für mikrotechnische Gasflusssensoren setzt das hier verwendete kalorimetrische Messprinzip in Kontext. Als Temperaturmesselemente kommen Nanodrahtarrays wegen ihres hohen Oberflächen/Volumenverhältnis vom und der dadurch erwarteten Verringerung der Ansprechzeit des Gasflusssensors zum Einsatz. Anschließend werden die Nanodrahtarrays beschrieben und mit Hilfe geometrischer Abschätzungen charakterisiert. Die Gegenüberstellung einer Vielzahl verschiedener Prozesse zur Integration von Nanodrahtarrays mündet im Konzept für ein entsprechendes Mikrosystem. Mit Hilfe numerischer Berechnungen wird das System für seine Funktion als Gasflusssensor optimiert. Ein besonderes Augenmerk dieser Arbeit liegt auf der Modellierung des Gasflusses durch die Nanodrahtarrays und dem Temperaturaustausch zwischen Gas und Nanodrähten. Dabei wird der verwendete Finite Volumen Methode (FVM) Algorithmus speziell an Gasflüsse in nanoskaligen Strukturen angepasst. Die Ergebnisse der Betrachtung zeigen das Potential der Nanodrähte in der Gasflusssensorik auf. Die Simulationsergebnisse legen nahe, dass die derzeitige Form der Nanodrahtarrays nicht das volle Potential der Nanodrähte ausschöpft. Die Reaktionszeit auf einen Temperatursprung liegt bei einzelnen Nanodrähten Bereich von < 1 µs. Die Reaktionszeit des Arrays ist mit etwa einer Millisekunde wesentlich höher. Die Durchführung des entwickelten Integrationsprozesses resultiert in der erfolgreichen Herstellung des konzipierten Mikrosystems. Den Abschluss der Arbeit bilden eine kritische Betrachtung der erzielten Ergebnisse sowie ein Ausblick darauf, wie in die Eigenschaften der Nanodrähte in zukünftigen Generationen von Gasflusssensoren besser genutzt werden können.

Freie Schlagworte: Mikro-Nano-Integration, Nanodraht, Modellierung Mikrofluss, Finite Volumen Methode, Mikrokontaktierung, Mikromontage
Fachbereich(e)/-gebiet(e): Fachbereich Elektrotechnik und Informationstechnik > Institut für Elektromechanische Konstruktionen
Fachbereich Elektrotechnik und Informationstechnik > Institut für Elektromechanische Konstruktionen > Mikrotechnik und Elektromechanische Systeme
Fachbereich Elektrotechnik und Informationstechnik
Hinterlegungsdatum: 07 Mai 2010 12:53
Zusätzliche Informationen:

Fachbereichsbibliothek Nachrichtentechnik (NTB), Bibliotheks-Sigel 17/24

ID-Nummer: 17/24 EMK DA 1721
Gutachter / Prüfer: Schlaak, Prof. Dr.- Helmut F. ; Greiner, Dipl.-Ing. Felix
Datum der Begutachtung bzw. der mündlichen Prüfung / Verteidigung / mdl. Prüfung: 19 Februar 2010
Verwandte URLs:
Export:

Optionen (nur für Redakteure)

Eintrag anzeigen Eintrag anzeigen