TU Darmstadt / ULB / TUbiblio

Role of AMT1;1 in NH4+ acquisition in Arabidopsis thaliana

Mayer, M. and Ludewig, U. (2006):
Role of AMT1;1 in NH4+ acquisition in Arabidopsis thaliana.
In: Plant biology (Stuttgart, Germany), pp. 522-8, 8, (4), ISSN 1435-8603, [Article]

Abstract

AtAMT1;1 was the founding member of the family of AMT/Rh ammonium transporters and accounts for about one third of the total ammonium absorption in the roots of the model plant Arabidopsis. Recent evidence suggested that at least some AMT/Rh proteins are NH3 gas channels. In order to evaluate the transported form of ammonium in AtAMT1;1, the protein was functionally expressed in Xenopus oocytes. AtAMT1;1 elicited NH4+ and methylammonium (MeA+) inward currents that saturated in a voltage-dependent manner with a half maximal concentration of 2.7 +/- 1.6 microM for NH4+ and 5.0 +/- 0.7 microM for the transport analogue methylammonium. AtAMT1;1 was plasma membrane localized and expressed in the root cortex and epidermis, including root hairs. The AtAMT1;1-GFP fusion construct under control of its endogenous promoter revealed additional localization of the protein in the pericycle, in the leaf epidermis, and in mesophyll cells. The functional data and its localization suggest that AtAMT1;1 participates in concentrative NH4+ acquisition in roots, in long-distance transport to the shoots, and in re-uptake of apoplastic NH4+ that derives from photorespiration in shoots.

Item Type: Article
Erschienen: 2006
Creators: Mayer, M. and Ludewig, U.
Title: Role of AMT1;1 in NH4+ acquisition in Arabidopsis thaliana
Language: English
Abstract:

AtAMT1;1 was the founding member of the family of AMT/Rh ammonium transporters and accounts for about one third of the total ammonium absorption in the roots of the model plant Arabidopsis. Recent evidence suggested that at least some AMT/Rh proteins are NH3 gas channels. In order to evaluate the transported form of ammonium in AtAMT1;1, the protein was functionally expressed in Xenopus oocytes. AtAMT1;1 elicited NH4+ and methylammonium (MeA+) inward currents that saturated in a voltage-dependent manner with a half maximal concentration of 2.7 +/- 1.6 microM for NH4+ and 5.0 +/- 0.7 microM for the transport analogue methylammonium. AtAMT1;1 was plasma membrane localized and expressed in the root cortex and epidermis, including root hairs. The AtAMT1;1-GFP fusion construct under control of its endogenous promoter revealed additional localization of the protein in the pericycle, in the leaf epidermis, and in mesophyll cells. The functional data and its localization suggest that AtAMT1;1 participates in concentrative NH4+ acquisition in roots, in long-distance transport to the shoots, and in re-uptake of apoplastic NH4+ that derives from photorespiration in shoots.

Journal or Publication Title: Plant biology (Stuttgart, Germany)
Volume: 8
Number: 4
Divisions: 10 Department of Biology > Plant Nutrition and Biomass
?? fb10_botanik ??
10 Department of Biology
Date Deposited: 16 Mar 2010 14:08
Export:

Optionen (nur für Redakteure)

View Item View Item