###
**
Kirillov, O. N.
:**

*Dissipation-induced subcritical flutter in the acoustics of friction.*

[Online-Edition: http://www3.interscience.wiley.com/journal/122218692/abstrac...]

In:
Proceedings in Applied Mathematics and Mechanics, 8(1)
pp. 10685-10686.

[Artikel], (2008)

## Kurzbeschreibung (Abstract)

We consider a gyroscopic system under the action of small dissipative and non-conservative positional forces, which has its origin in the models of rotating elastic bodies of revolution in frictional contact such as the singing wine glass or the squealing disc/drum brakes. The spectrum of the unperturbed gyroscopic system forms a spectral mesh in the plane frequency versus gyroscopic parameter with double semi-simple purely imaginary eigenvalues at the nodes. In the subcritical range of the gyroscopic parameter the eigenvalues involved into the crossings have the same Krein signature and thus their splitting due to changes in the stiffness matrix, which break the rotational symmetry of the body, cannot produce complex eigenvalues and, therefore, flutter. We establish that perturbation of the gyroscopic system by the dissipative forces with the indefinite matrix can lead to the subcritical flutter instability even if the rotational symmetry is destroyed. With the use of the perturbation theory of multiple eigenvalues we explicitly find the linear approximation to the domain of the subcritical flutter, which turns out to have a conical shape. The orientation of the cone in the three dimensional space of the parameters, corresponding to gyroscopic, damping, and potential forces, is determined by the sign of an explicit expression involving the entries of both the damping and potential matrices. With the use of a time-dependent coordinate transformation we demonstrate that the conical zones of flutter for the original autonomous system coincide with the zones of the subcritical parametric resonance of the rotationally symmetric flexible body with the load moving in the circumferential direction.

Typ des Eintrags: | Artikel |
---|---|

Erschienen: | 2008 |

Autor(en): | Kirillov, O. N. |

Titel: | Dissipation-induced subcritical flutter in the acoustics of friction. |

Sprache: | Englisch |

Kurzbeschreibung (Abstract): | We consider a gyroscopic system under the action of small dissipative and non-conservative positional forces, which has its origin in the models of rotating elastic bodies of revolution in frictional contact such as the singing wine glass or the squealing disc/drum brakes. The spectrum of the unperturbed gyroscopic system forms a spectral mesh in the plane frequency versus gyroscopic parameter with double semi-simple purely imaginary eigenvalues at the nodes. In the subcritical range of the gyroscopic parameter the eigenvalues involved into the crossings have the same Krein signature and thus their splitting due to changes in the stiffness matrix, which break the rotational symmetry of the body, cannot produce complex eigenvalues and, therefore, flutter. We establish that perturbation of the gyroscopic system by the dissipative forces with the indefinite matrix can lead to the subcritical flutter instability even if the rotational symmetry is destroyed. With the use of the perturbation theory of multiple eigenvalues we explicitly find the linear approximation to the domain of the subcritical flutter, which turns out to have a conical shape. The orientation of the cone in the three dimensional space of the parameters, corresponding to gyroscopic, damping, and potential forces, is determined by the sign of an explicit expression involving the entries of both the damping and potential matrices. With the use of a time-dependent coordinate transformation we demonstrate that the conical zones of flutter for the original autonomous system coincide with the zones of the subcritical parametric resonance of the rotationally symmetric flexible body with the load moving in the circumferential direction. |

Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Proceedings in Applied Mathematics and Mechanics |

Band: | 8(1) |

Verlag: | Kluwer |

Fachbereich(e)/-gebiet(e): | Fachbereich Maschinenbau Fachbereich Maschinenbau > Dynamik und Schwingungen, Dynamics and Vibrations |

Hinterlegungsdatum: | 12 Mär 2009 12:47 |

Offizielle URL: | http://www3.interscience.wiley.com/journal/122218692/abstrac... |

Zusätzliche Informationen: | Department of Mechanical Engineering, Dynamics group |

Export: |

#### Optionen (nur für Redakteure)

Eintrag anzeigen |