TU Darmstadt / ULB / TUbiblio

An Agent-based Model-Compound for Fire Protection Engineering

Meißner, Udo and Rüppel, Uwe and Theiß, Mirko and Lange, Michael Soibelman, Lucio (ed.) (2005):
An Agent-based Model-Compound for Fire Protection Engineering.
In: Proceedings of the 2005 ASCE International Conference on Computing in Civil Engineering, Reston, Va., American Society of Civil Engineers, In: International Conference on Computing in Civil Engineering 2005 (ICCC), Cancun, Mexico, 12.-15. Juli 2005, ISBN 978-0-7844-0794-3,
[Conference or Workshop Item]

Abstract

Building design in civil engineering is characterized by the cooperation of experts in multiple disciplines. The close cooperation of engineers is the basis of a high product quality, short development periods and a minimum of investment costs. In contrast to most other design fields the development process in building design is characterized by the design of unique copies. For each building the engineers have to create a new fire protection model. As a result of huge fire disasters fire protection engineering is one of the central aspects for administrative authorities in the process of licensing the building design. Optimal conditions for the rescue of persons in case of fire only can be established, if the fire protection engineering conditions are created early in the planning process. The consistent realization of the fire protection model in all details has high demands on the communication and collaboration of the involved engineers and the corresponding building models. To preserve the related design models consistent to each other and compatible with the rules of fire protection engineering is a complex task. This leads to high demands on the semantic structure of communication, collaboration and building models. In addition, regulations and guidelines vary according to the building location, so the relevant rules must be integrated dynamically into the planning process. This paper covers the integration of engineers and design models into a cooperation network on the basis of mobile agents. Distributed models of architectural design, structural planning and fire protection engineering are supported. These can be accessed by mobile agents for information retrieval and for processing tasks. Agents which are enabled to check-up the distributed design models with the knowledge base of the fire protection regulations are provided to all planners. Thereby, the planners are supported to check-up their planning for accordance with the fire protection requirements. The fire-engineering-agent analyzes the design and detects inconsistencies by processing fire protection requirements and design model facts in a rule-based expert system. The possibility to check the planning information at an early state in the sense of compatibility to the fire protection regulations enables a comprehensive diagnosis of the design and leads to a reduction of planning errors.

Item Type: Conference or Workshop Item
Erschienen: 2005
Editors: Soibelman, Lucio
Creators: Meißner, Udo and Rüppel, Uwe and Theiß, Mirko and Lange, Michael
Title: An Agent-based Model-Compound for Fire Protection Engineering
Language: English
Abstract:

Building design in civil engineering is characterized by the cooperation of experts in multiple disciplines. The close cooperation of engineers is the basis of a high product quality, short development periods and a minimum of investment costs. In contrast to most other design fields the development process in building design is characterized by the design of unique copies. For each building the engineers have to create a new fire protection model. As a result of huge fire disasters fire protection engineering is one of the central aspects for administrative authorities in the process of licensing the building design. Optimal conditions for the rescue of persons in case of fire only can be established, if the fire protection engineering conditions are created early in the planning process. The consistent realization of the fire protection model in all details has high demands on the communication and collaboration of the involved engineers and the corresponding building models. To preserve the related design models consistent to each other and compatible with the rules of fire protection engineering is a complex task. This leads to high demands on the semantic structure of communication, collaboration and building models. In addition, regulations and guidelines vary according to the building location, so the relevant rules must be integrated dynamically into the planning process. This paper covers the integration of engineers and design models into a cooperation network on the basis of mobile agents. Distributed models of architectural design, structural planning and fire protection engineering are supported. These can be accessed by mobile agents for information retrieval and for processing tasks. Agents which are enabled to check-up the distributed design models with the knowledge base of the fire protection regulations are provided to all planners. Thereby, the planners are supported to check-up their planning for accordance with the fire protection requirements. The fire-engineering-agent analyzes the design and detects inconsistencies by processing fire protection requirements and design model facts in a rule-based expert system. The possibility to check the planning information at an early state in the sense of compatibility to the fire protection regulations enables a comprehensive diagnosis of the design and leads to a reduction of planning errors.

Title of Book: Proceedings of the 2005 ASCE International Conference on Computing in Civil Engineering
Place of Publication: Reston, Va.
Publisher: American Society of Civil Engineers
ISBN: 978-0-7844-0794-3
Divisions: 13 Department of Civil and Environmental Engineering Sciences
13 Department of Civil and Environmental Engineering Sciences > Institute of Numerical Methods and Informatics in Civil Engineering
Event Title: International Conference on Computing in Civil Engineering 2005 (ICCC)
Event Location: Cancun, Mexico
Event Dates: 12.-15. Juli 2005
Date Deposited: 20 Nov 2008 08:21
Additional Information:

ISBN: 978-0-7844-0794-3

License: [undefiniert]
Related URLs:
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)

View Item View Item