TU Darmstadt / ULB / TUbiblio

Conductivity enhancement within garnet‐rich polymer composite electrolytes via the addition of succinonitrile

Vanita, Vanita ; Waidha, Aamir Iqbal ; Yadav, Sandeep ; Schneider, Jörg J. ; Clemens, Oliver (2023)
Conductivity enhancement within garnet‐rich polymer composite electrolytes via the addition of succinonitrile.
In: International Journal of Applied Ceramic Technology, 2022, 20 (1)
doi: 10.26083/tuprints-00023740
Artikel, Zweitveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

All‐solid‐state lithium‐ion batteries (ASSLIBs) are promising alternatives to conventional organic electrolyte‐based batteries due to their higher safety and higher energy densities. Despite advantages, ASSLIBs suffer from issues like high charge transfer resistances due to the brittleness of the inorganic solid electrolyte and chemical instabilities at the lithium/electrolyte interface. Within this work, we investigate composite electrolytes (CEs) based on garnet‐type Li₆.₄La₃Zr₁.₄Ta₀.₆O₁₂ (LLZTO), polyethylene oxide, and lithium bis(trifluoromethanesulfonyl)imide, prepared via a solvent‐free cryo‐milling approach in contrast to conventional solvent‐mediated synthesis. Compositions ranging from polymer‐rich to garnet‐rich systems are investigated via X‐ray diffraction, Raman spectroscopy, and Fourier transform infrared spectroscopy in order to determine the compatibility of the cryo‐milling process toward membrane fabrication along with the possible chemical interactions between the composite membrane components. Electrochemical impedance spectroscopy is used to study the role of ceramic to polymer weight fraction on ionic conductivity. It is shown that the addition of succinonitrile (SCN) to the garnet‐rich CEs can significantly improve the ionic conductivity compared to the SCN‐free CEs.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Vanita, Vanita ; Waidha, Aamir Iqbal ; Yadav, Sandeep ; Schneider, Jörg J. ; Clemens, Oliver
Art des Eintrags: Zweitveröffentlichung
Titel: Conductivity enhancement within garnet‐rich polymer composite electrolytes via the addition of succinonitrile
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Wiley-Blackwell
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal of Applied Ceramic Technology
Jahrgang/Volume einer Zeitschrift: 20
(Heft-)Nummer: 1
DOI: 10.26083/tuprints-00023740
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23740
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

All‐solid‐state lithium‐ion batteries (ASSLIBs) are promising alternatives to conventional organic electrolyte‐based batteries due to their higher safety and higher energy densities. Despite advantages, ASSLIBs suffer from issues like high charge transfer resistances due to the brittleness of the inorganic solid electrolyte and chemical instabilities at the lithium/electrolyte interface. Within this work, we investigate composite electrolytes (CEs) based on garnet‐type Li₆.₄La₃Zr₁.₄Ta₀.₆O₁₂ (LLZTO), polyethylene oxide, and lithium bis(trifluoromethanesulfonyl)imide, prepared via a solvent‐free cryo‐milling approach in contrast to conventional solvent‐mediated synthesis. Compositions ranging from polymer‐rich to garnet‐rich systems are investigated via X‐ray diffraction, Raman spectroscopy, and Fourier transform infrared spectroscopy in order to determine the compatibility of the cryo‐milling process toward membrane fabrication along with the possible chemical interactions between the composite membrane components. Electrochemical impedance spectroscopy is used to study the role of ceramic to polymer weight fraction on ionic conductivity. It is shown that the addition of succinonitrile (SCN) to the garnet‐rich CEs can significantly improve the ionic conductivity compared to the SCN‐free CEs.

Freie Schlagworte: composites, electrolyte, ionic conductivity
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-237409
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialdesign durch Synthese
07 Fachbereich Chemie
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Anorganische Chemie
Hinterlegungsdatum: 26 Mai 2023 11:46
Letzte Änderung: 30 Mai 2023 05:14
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen