TU Darmstadt / ULB / TUbiblio

High Entropy Approach to Engineer Strongly Correlated Functionalities in Manganites

Sarkar, Abhishek ; Wang, Di ; Kante, Mohana V. ; Eiselt, Luis ; Trouillet, Vanessa ; Iankevich, Gleb ; Zhao, Zhibo ; Bhattacharya, Subramshu S. ; Hahn, Horst ; Kruk, Robert (2023)
High Entropy Approach to Engineer Strongly Correlated Functionalities in Manganites.
In: Advanced Materials, 2022, 35 (2)
doi: 10.26083/tuprints-00023686
Artikel, Zweitveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

Technologically relevant strongly correlated phenomena such as colossal magnetoresistance (CMR) and metal‐insulator transitions (MIT) exhibited by perovskite manganites are driven and enhanced by the coexistence of multiple competing magneto‐electronic phases. Such magneto‐electronic inhomogeneity is governed by the intrinsic lattice‐charge‐spin‐orbital correlations, which, in turn, are conventionally tailored in manganites via chemical substitution, charge doping, or strain engineering. Alternately, the recently discovered high entropy oxides (HEOs), owing to the presence of multiple‐principal cations on a given sub‐lattice, exhibit indications of an inherent magneto‐electronic phase separation encapsulated in a single crystallographic phase. Here, the high entropy (HE) concept is combined with standard property control by hole doping in a series of single‐phase orthorhombic HE‐manganites (HE‐Mn), (Gd₀.₂₅La₀.₂₅Nd₀.₂₅Sm₀.₂₅)₁₋ₓSrₓMnO₃ (x = 0–0.5). High‐resolution transmission microscopy reveals hitherto‐unknown lattice imperfections in HEOs: twins, stacking faults, and missing planes. Magnetometry and electrical measurements infer three distinct ground states—insulating antiferromagnetic, unpercolated metallic ferromagnetic, and long‐range metallic ferromagnetic—coexisting or/and competing as a result of hole doping and multi‐cation complexity. Consequently, CMR ≈1550% stemming from an MIT is observed in polycrystalline pellets, matching the best‐known values for bulk conventional manganites. Hence, this initial case study highlights the potential for a synergetic development of strongly correlated oxides offered by the high entropy design approach.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Sarkar, Abhishek ; Wang, Di ; Kante, Mohana V. ; Eiselt, Luis ; Trouillet, Vanessa ; Iankevich, Gleb ; Zhao, Zhibo ; Bhattacharya, Subramshu S. ; Hahn, Horst ; Kruk, Robert
Art des Eintrags: Zweitveröffentlichung
Titel: High Entropy Approach to Engineer Strongly Correlated Functionalities in Manganites
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Materials
Jahrgang/Volume einer Zeitschrift: 35
(Heft-)Nummer: 2
Kollation: 14 Seiten
DOI: 10.26083/tuprints-00023686
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23686
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Technologically relevant strongly correlated phenomena such as colossal magnetoresistance (CMR) and metal‐insulator transitions (MIT) exhibited by perovskite manganites are driven and enhanced by the coexistence of multiple competing magneto‐electronic phases. Such magneto‐electronic inhomogeneity is governed by the intrinsic lattice‐charge‐spin‐orbital correlations, which, in turn, are conventionally tailored in manganites via chemical substitution, charge doping, or strain engineering. Alternately, the recently discovered high entropy oxides (HEOs), owing to the presence of multiple‐principal cations on a given sub‐lattice, exhibit indications of an inherent magneto‐electronic phase separation encapsulated in a single crystallographic phase. Here, the high entropy (HE) concept is combined with standard property control by hole doping in a series of single‐phase orthorhombic HE‐manganites (HE‐Mn), (Gd₀.₂₅La₀.₂₅Nd₀.₂₅Sm₀.₂₅)₁₋ₓSrₓMnO₃ (x = 0–0.5). High‐resolution transmission microscopy reveals hitherto‐unknown lattice imperfections in HEOs: twins, stacking faults, and missing planes. Magnetometry and electrical measurements infer three distinct ground states—insulating antiferromagnetic, unpercolated metallic ferromagnetic, and long‐range metallic ferromagnetic—coexisting or/and competing as a result of hole doping and multi‐cation complexity. Consequently, CMR ≈1550% stemming from an MIT is observed in polycrystalline pellets, matching the best‐known values for bulk conventional manganites. Hence, this initial case study highlights the potential for a synergetic development of strongly correlated oxides offered by the high entropy design approach.

Freie Schlagworte: colossal magnetoresistance, high entropy oxides, magneto‐electronic phase separation, metal‐insulator transitions, strongly correlated electron systems
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-236861
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Gemeinschaftslabor Nanomaterialien
Hinterlegungsdatum: 12 Mai 2023 08:52
Letzte Änderung: 15 Mai 2023 06:53
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen