TU Darmstadt / ULB / TUbiblio

Immobilization of O2-tolerant [NiFe] hydrogenase from Cupriavidus necator on Tin-rich Indium Oxide Alters the Catalytic Bias from H2 Oxidation to Proton Reduction

Davis, Victoria ; Heidary, Nina ; Guiet, Amandine ; Ly, Khoa Hoang ; Zerball, Maximilian ; Schulz, Claudia ; Michael, Norbert ; Klitzing, Regine von ; Hildebrandt, Peter ; Frielingsdorf, Stefan ; Lenz, Oliver ; Zebger, Ingo ; Fischer, Anna (2023)
Immobilization of O2-tolerant [NiFe] hydrogenase from Cupriavidus necator on Tin-rich Indium Oxide Alters the Catalytic Bias from H2 Oxidation to Proton Reduction.
In: ACS Catalysis, 13
doi: 10.1021/acscatal.2c06334
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The ability of hydrogenases to reversibly catalyze the production and oxidation of hydrogen with minimal overpotential makes them attractive electrocatalysts for hydrogen energy conversion devices. The oxygen tolerance demonstrated by the membrane-bound [NiFe] hydrogenase (MBH) from Cupriavidus necator (previously known as Ralstonia eutropha) provides a further advantage; however, this enzyme is well-known as being strongly biased toward hydrogen oxidation and shows little promise toward hydrogen production. Here, we have immobilized the MBH after genetically attaching two different affinity tags to the C terminus of the enzyme─a His-tag (MBHHis) and a Strep-tag (MBHStrep). The differences in adsorption and electrocatalytic behavior were investigated when wired to an amorphous, transparent, and planar tin-rich indium tin oxide (ITOTR) thin-film electrode with a Sn/In ratio of 1:1. As demonstrated by ATR–IR spectroelectrochemical studies, the affinity of the His-tag for the tin-rich ITO surface allows for quantitative immobilization of MBHHis in a direct electron transfer configuration. Remarkably, once immobilized on tin-rich ITO, hydrogen oxidation as well as an unusually high proton reduction current is observed especially under hydrogen. While this behavior is only observed for tin-rich ITO (as compared to classical crystalline ITO, with a lower tin content) and not fully understood so far, the conditions demonstrated herein promote catalytic bidirectionality in essentially unidirectional [NiFe] hydrogenases, and that is at least partially related to favorable, direct enzyme–semiconductor interactions.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Davis, Victoria ; Heidary, Nina ; Guiet, Amandine ; Ly, Khoa Hoang ; Zerball, Maximilian ; Schulz, Claudia ; Michael, Norbert ; Klitzing, Regine von ; Hildebrandt, Peter ; Frielingsdorf, Stefan ; Lenz, Oliver ; Zebger, Ingo ; Fischer, Anna
Art des Eintrags: Bibliographie
Titel: Immobilization of O2-tolerant [NiFe] hydrogenase from Cupriavidus necator on Tin-rich Indium Oxide Alters the Catalytic Bias from H2 Oxidation to Proton Reduction
Sprache: Englisch
Publikationsjahr: 24 April 2023
Verlag: ACS Publications
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ACS Catalysis
Jahrgang/Volume einer Zeitschrift: 13
DOI: 10.1021/acscatal.2c06334
Kurzbeschreibung (Abstract):

The ability of hydrogenases to reversibly catalyze the production and oxidation of hydrogen with minimal overpotential makes them attractive electrocatalysts for hydrogen energy conversion devices. The oxygen tolerance demonstrated by the membrane-bound [NiFe] hydrogenase (MBH) from Cupriavidus necator (previously known as Ralstonia eutropha) provides a further advantage; however, this enzyme is well-known as being strongly biased toward hydrogen oxidation and shows little promise toward hydrogen production. Here, we have immobilized the MBH after genetically attaching two different affinity tags to the C terminus of the enzyme─a His-tag (MBHHis) and a Strep-tag (MBHStrep). The differences in adsorption and electrocatalytic behavior were investigated when wired to an amorphous, transparent, and planar tin-rich indium tin oxide (ITOTR) thin-film electrode with a Sn/In ratio of 1:1. As demonstrated by ATR–IR spectroelectrochemical studies, the affinity of the His-tag for the tin-rich ITO surface allows for quantitative immobilization of MBHHis in a direct electron transfer configuration. Remarkably, once immobilized on tin-rich ITO, hydrogen oxidation as well as an unusually high proton reduction current is observed especially under hydrogen. While this behavior is only observed for tin-rich ITO (as compared to classical crystalline ITO, with a lower tin content) and not fully understood so far, the conditions demonstrated herein promote catalytic bidirectionality in essentially unidirectional [NiFe] hydrogenases, and that is at least partially related to favorable, direct enzyme–semiconductor interactions.

Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Festkörperphysik (2021 umbenannt in Institut für Physik Kondensierter Materie (IPKM))
Hinterlegungsdatum: 04 Mai 2023 08:18
Letzte Änderung: 31 Jul 2023 08:35
PPN: 510031773
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen