TU Darmstadt / ULB / TUbiblio

Application of Population Balance Models in Particle-Stabilized Dispersions

Röhl, Susanne ; Hohl, Lena ; Stock, Sebastian ; Zhan, Manlin ; Kopf, Tobias ; Klitzing, Regine von ; Kraume, Matthias (2023)
Application of Population Balance Models in Particle-Stabilized Dispersions.
In: Nanomaterials, 2023, 13 (4)
doi: 10.26083/tuprints-00023346
Artikel, Zweitveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

In this study, a first approach to model drop size distributions in agitated nanoparticle-stabilized liquid/liquid systems with population balance equations is presented. Established coalescence efficiency models fail to predict the effect of steric hindrance of nanoparticles at the liquid/liquid interface during the film drainage process. A novel modified coalescence efficiency is developed for the population balance framework based on the film drainage model. The elaborate submodel considers the desorption energy required to detach a particle from the interface, representing an energy barrier against coalescence. With an additional implemented function in the population balance framework, the interface coverage rate by particles is calculated for each time step. The transient change of the coverage degree of the phase interface by particles is thereby considered in the submodel. Validation of the modified submodel was performed with experimental data of agitated water-in-oil (w/o) dispersions, stabilized by well-defined spherical silica nanoparticles. The nanospheres with a size of 28 nm are positively charged and were hydrophobized by silanization with dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammoniumchloride. This modeling approach is a first step toward predicting time-resolved dynamic drop size distributions of nanoparticle-stabilized liquid/liquid systems.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Röhl, Susanne ; Hohl, Lena ; Stock, Sebastian ; Zhan, Manlin ; Kopf, Tobias ; Klitzing, Regine von ; Kraume, Matthias
Art des Eintrags: Zweitveröffentlichung
Titel: Application of Population Balance Models in Particle-Stabilized Dispersions
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2023
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nanomaterials
Jahrgang/Volume einer Zeitschrift: 13
(Heft-)Nummer: 4
Kollation: 23 Seiten
DOI: 10.26083/tuprints-00023346
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23346
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

In this study, a first approach to model drop size distributions in agitated nanoparticle-stabilized liquid/liquid systems with population balance equations is presented. Established coalescence efficiency models fail to predict the effect of steric hindrance of nanoparticles at the liquid/liquid interface during the film drainage process. A novel modified coalescence efficiency is developed for the population balance framework based on the film drainage model. The elaborate submodel considers the desorption energy required to detach a particle from the interface, representing an energy barrier against coalescence. With an additional implemented function in the population balance framework, the interface coverage rate by particles is calculated for each time step. The transient change of the coverage degree of the phase interface by particles is thereby considered in the submodel. Validation of the modified submodel was performed with experimental data of agitated water-in-oil (w/o) dispersions, stabilized by well-defined spherical silica nanoparticles. The nanospheres with a size of 28 nm are positively charged and were hydrophobized by silanization with dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammoniumchloride. This modeling approach is a first step toward predicting time-resolved dynamic drop size distributions of nanoparticle-stabilized liquid/liquid systems.

Freie Schlagworte: Pickering emulsion, stirred tank, interface coverage degree, coalescence efficiency
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-233468
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Physik Kondensierter Materie (IPKM)
Hinterlegungsdatum: 11 Apr 2023 12:12
Letzte Änderung: 13 Apr 2023 14:42
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen