TU Darmstadt / ULB / TUbiblio

Ferromagnetic Mn–Al–C L10 Formation by Electric Current Assisted Annealing

Maccari, Fernando ; Zintler, Alexander ; Brede, Thomas ; Radulov, Iliya A. ; Skokov, Konstantin P. ; Molina-Luna, Leopoldo ; Gutfleisch, Oliver (2023)
Ferromagnetic Mn–Al–C L10 Formation by Electric Current Assisted Annealing.
In: Advanced Engineering Materials
doi: 10.1002/adem.202201805
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The ferromagnetic Mn–Al–C τ-phase ( tetragonal structure) shows intrinsic potential to be developed as a permanent magnet; however, this phase is metastable and is easily decomposed to nonmagnetic stable phases, affecting negatively the magnetic properties. Giving the necessity to careful control of its synthesis, the use of a novel approach is investigated using electric current–assisted annealing to obtain pure τ-phase samples. The temperature and electrical resistance of the samples are monitored during annealing and it is shown that the change in resistance can be used to probe the phase transformation. Upon increase of electric current density, the required temperature for the ferromagnetic phase formation is reduced, reaching a maximum shift of 140 °C at 45 A mm−2. Even though this noticeable shift is achieved, the magnetic properties are not affected showing coercivity of 0.13 T and magnetization of 90 Am2 kg−1, independently from the electric current density used during annealing. Microstructural investigation reveals the nucleation of the τ-phase at the grain boundaries of the parent ε-phase. In addition, the existence of twin boundaries upon nucleation and growth of the metastable phase for all evaluated annealing conditions is observed, resulting in similar extrinsic magnetic properties.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Maccari, Fernando ; Zintler, Alexander ; Brede, Thomas ; Radulov, Iliya A. ; Skokov, Konstantin P. ; Molina-Luna, Leopoldo ; Gutfleisch, Oliver
Art des Eintrags: Bibliographie
Titel: Ferromagnetic Mn–Al–C L10 Formation by Electric Current Assisted Annealing
Sprache: Englisch
Publikationsjahr: 1 Februar 2023
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Engineering Materials
DOI: 10.1002/adem.202201805
Kurzbeschreibung (Abstract):

The ferromagnetic Mn–Al–C τ-phase ( tetragonal structure) shows intrinsic potential to be developed as a permanent magnet; however, this phase is metastable and is easily decomposed to nonmagnetic stable phases, affecting negatively the magnetic properties. Giving the necessity to careful control of its synthesis, the use of a novel approach is investigated using electric current–assisted annealing to obtain pure τ-phase samples. The temperature and electrical resistance of the samples are monitored during annealing and it is shown that the change in resistance can be used to probe the phase transformation. Upon increase of electric current density, the required temperature for the ferromagnetic phase formation is reduced, reaching a maximum shift of 140 °C at 45 A mm−2. Even though this noticeable shift is achieved, the magnetic properties are not affected showing coercivity of 0.13 T and magnetization of 90 Am2 kg−1, independently from the electric current density used during annealing. Microstructural investigation reveals the nucleation of the τ-phase at the grain boundaries of the parent ε-phase. In addition, the existence of twin boundaries upon nucleation and growth of the metastable phase for all evaluated annealing conditions is observed, resulting in similar extrinsic magnetic properties.

Freie Schlagworte: electric current–assisted annealing, metastable phase, Mn–Al–C permanent magnets, phase transformation
Zusätzliche Informationen:

Artikel-ID: 2201805

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
Hinterlegungsdatum: 15 Mär 2023 06:10
Letzte Änderung: 02 Jun 2023 06:37
PPN: 505938421
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen