TU Darmstadt / ULB / TUbiblio

Nanoindentation pop‐in in oxides at room temperature: Dislocation activation or crack formation?

Fang, Xufei ; Bishara, Hanna ; Ding, Kuan ; Tsybenko, Hanna ; Porz, Lukas ; Höfling, Marion ; Bruder, Enrico ; Li, Yingwei ; Dehm, Gerhard ; Durst, Karsten (2023)
Nanoindentation pop‐in in oxides at room temperature: Dislocation activation or crack formation?
In: Journal of the American Ceramic Society, 2021, 104 (9)
doi: 10.26083/tuprints-00023199
Artikel, Zweitveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

Most oxide ceramics are known to be brittle macroscopically at room temperature with little or no dislocation-based plasticity prior to crack propagation. Here, we demonstrate the size-dependent brittle to ductile transition in SrTiO₃ at room temperature using nanoindentation pop-in events visible as a sudden increase in displacement at nominally constant load. We identify that the indentation pop-in event in SrTiO₃ at room temperature, below a critical indenter tip radius, is dominated by dislocation-mediated plasticity. When the tip radius increases to a critical size, concurrent dislocation activation and crack formation, with the latter being the dominating process, occur during the pop-in event. Beyond the experimental examination and theoretical justification presented on SrTiO₃ as a model system, further validation on α-Al₂O₃, BaTiO₃, and TiO₂ are briefly presented and discussed. A new indentation size effect, mainly for brittle ceramics, is suggested by the competition between the dislocation-based plasticity and crack formation at small scale. Our finding complements the deformation mechanism in the nano-/microscale deformation regime involving plasticity and cracking in ceramics at room temperature to pave the road for dislocation-based mechanics and functionalities study in these materials.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Fang, Xufei ; Bishara, Hanna ; Ding, Kuan ; Tsybenko, Hanna ; Porz, Lukas ; Höfling, Marion ; Bruder, Enrico ; Li, Yingwei ; Dehm, Gerhard ; Durst, Karsten
Art des Eintrags: Zweitveröffentlichung
Titel: Nanoindentation pop‐in in oxides at room temperature: Dislocation activation or crack formation?
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2021
Verlag: Wiley
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of the American Ceramic Society
Jahrgang/Volume einer Zeitschrift: 104
(Heft-)Nummer: 9
DOI: 10.26083/tuprints-00023199
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23199
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Most oxide ceramics are known to be brittle macroscopically at room temperature with little or no dislocation-based plasticity prior to crack propagation. Here, we demonstrate the size-dependent brittle to ductile transition in SrTiO₃ at room temperature using nanoindentation pop-in events visible as a sudden increase in displacement at nominally constant load. We identify that the indentation pop-in event in SrTiO₃ at room temperature, below a critical indenter tip radius, is dominated by dislocation-mediated plasticity. When the tip radius increases to a critical size, concurrent dislocation activation and crack formation, with the latter being the dominating process, occur during the pop-in event. Beyond the experimental examination and theoretical justification presented on SrTiO₃ as a model system, further validation on α-Al₂O₃, BaTiO₃, and TiO₂ are briefly presented and discussed. A new indentation size effect, mainly for brittle ceramics, is suggested by the competition between the dislocation-based plasticity and crack formation at small scale. Our finding complements the deformation mechanism in the nano-/microscale deformation regime involving plasticity and cracking in ceramics at room temperature to pave the road for dislocation-based mechanics and functionalities study in these materials.

Freie Schlagworte: crack formation, dislocation, nanoindentation pop-in, oxide, size effect
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-231998
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
Hinterlegungsdatum: 10 Feb 2023 09:20
Letzte Änderung: 13 Feb 2023 07:06
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen