TU Darmstadt / ULB / TUbiblio

Thermal stability of nanoscale ferroelectric domains by molecular dynamics modeling

Klomp, Arne J. ; Khachaturyan, Ruben ; Wallis, Theophilus ; Albe, Karsten ; Grünebohm, Anna (2022)
Thermal stability of nanoscale ferroelectric domains by molecular dynamics modeling.
In: Physical Review Materials, 6 (10)
doi: 10.1103/PhysRevMaterials.6.104411
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Ultradense domain walls are increasingly important for many devices but their microscopic properties are so far not fully understood. Here we use molecular dynamic simulations to study the domain wall stability in the prototypical ferroelectric BaTiO3 combining core-shell pair potentials and a coarse-grained effective Hamiltonian. We transfer the discussion of the field-driven nucleation and motion of domain walls to thermally induced modifications of the wall without an external driving force. Our simulations show that domain wall dynamics and stability depend crucially on microscopic thermal fluctuations. Enhanced fluctuations at domain walls may result in the formation of critical nuclei for the permanent shift of the domain wall. If two domain walls are close—put in other words, when domains are small—thermal fluctuations can be sufficient to bring domain walls into contact and lead to the annihilation of small domains. This is even true well below the Curie temperature and when domain walls are initially as far apart as six unit cells. Such small domains are, thus, not stable and limit the maximum achievable domain wall density in nanoelectronic devices.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Klomp, Arne J. ; Khachaturyan, Ruben ; Wallis, Theophilus ; Albe, Karsten ; Grünebohm, Anna
Art des Eintrags: Bibliographie
Titel: Thermal stability of nanoscale ferroelectric domains by molecular dynamics modeling
Sprache: Englisch
Publikationsjahr: 24 Oktober 2022
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physical Review Materials
Jahrgang/Volume einer Zeitschrift: 6
(Heft-)Nummer: 10
DOI: 10.1103/PhysRevMaterials.6.104411
Kurzbeschreibung (Abstract):

Ultradense domain walls are increasingly important for many devices but their microscopic properties are so far not fully understood. Here we use molecular dynamic simulations to study the domain wall stability in the prototypical ferroelectric BaTiO3 combining core-shell pair potentials and a coarse-grained effective Hamiltonian. We transfer the discussion of the field-driven nucleation and motion of domain walls to thermally induced modifications of the wall without an external driving force. Our simulations show that domain wall dynamics and stability depend crucially on microscopic thermal fluctuations. Enhanced fluctuations at domain walls may result in the formation of critical nuclei for the permanent shift of the domain wall. If two domain walls are close—put in other words, when domains are small—thermal fluctuations can be sufficient to bring domain walls into contact and lead to the annihilation of small domains. This is even true well below the Curie temperature and when domain walls are initially as far apart as six unit cells. Such small domains are, thus, not stable and limit the maximum achievable domain wall density in nanoelectronic devices.

Freie Schlagworte: Electronic materials, Ferroelectric domains, Fluctuations & noise, Interatomic & molecular potentials, Molecular dynamics
Zusätzliche Informationen:

Artikel-ID: 104411

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
LOEWE
LOEWE > LOEWE-Schwerpunkte
LOEWE > LOEWE-Schwerpunkte > FLAME - Fermi Level Engineering Antiferroelektrischer Materialien für Energiespeicher und Isolatoren
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 11 Jan 2023 09:35
Letzte Änderung: 11 Jan 2023 10:51
PPN: 503553301
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen