TU Darmstadt / ULB / TUbiblio

Operando spectroelectrochemistry of bulk-exfoliated 2D SnS₂ for anodes within alkali metal ion batteries reveals unusual tin (III) states

Radtke, Mariusz ; Hess, Christian (2022)
Operando spectroelectrochemistry of bulk-exfoliated 2D SnS₂ for anodes within alkali metal ion batteries reveals unusual tin (III) states.
In: Frontiers in Chemistry, 2022, 10
doi: 10.26083/tuprints-00022830
Artikel, Zweitveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

In this study we report an affordable synthesis and preparation of an electrochemically exfoliated few-layer 2-dimensional (2D) SnS₂ anode material of high cycling durability and demonstrate its performance on the example of alkali metal batteries. The metalation mechanism consists of highly unusual and previously only speculated Sn (III)-state grasped by operando Raman spectroelectrochemistry aided by symmetry analysis. The prepared 2D material flakes were characterized by high resolution transmission electron microscopy, X-ray photoelectron and Raman spectroscopies. The operando Raman spectroelectrochemistry was chosen as a dedicated tool for the investigation of alkali-metal-ion intercalation (Li, Na, K), whereby the distortion of the A1g Raman active mode (out-of-plane S-Sn-S vibration) during battery charging exhibited a substantial dependence on the electrochemically applied potential. As a result of the structural dynamics a considerable Raman red-shift of 17.6 cm⁻¹ was observed during metalation. Linewidth changes were used to evaluate the expansion caused by metalation, which in case of sodium and potassium were found to be minimal compared to lithium. Based on the spectroscopic and electrochemical results, a mechanism for the de-/intercalation of lithium, sodium and potassium is proposed which includes alloying in few-layer 2D SnS₂ materials and the generation of point-defects.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Radtke, Mariusz ; Hess, Christian
Art des Eintrags: Zweitveröffentlichung
Titel: Operando spectroelectrochemistry of bulk-exfoliated 2D SnS₂ for anodes within alkali metal ion batteries reveals unusual tin (III) states
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Frontiers Media S.A.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Frontiers in Chemistry
Jahrgang/Volume einer Zeitschrift: 10
Kollation: 16 Seiten
DOI: 10.26083/tuprints-00022830
URL / URN: https://tuprints.ulb.tu-darmstadt.de/22830
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

In this study we report an affordable synthesis and preparation of an electrochemically exfoliated few-layer 2-dimensional (2D) SnS₂ anode material of high cycling durability and demonstrate its performance on the example of alkali metal batteries. The metalation mechanism consists of highly unusual and previously only speculated Sn (III)-state grasped by operando Raman spectroelectrochemistry aided by symmetry analysis. The prepared 2D material flakes were characterized by high resolution transmission electron microscopy, X-ray photoelectron and Raman spectroscopies. The operando Raman spectroelectrochemistry was chosen as a dedicated tool for the investigation of alkali-metal-ion intercalation (Li, Na, K), whereby the distortion of the A1g Raman active mode (out-of-plane S-Sn-S vibration) during battery charging exhibited a substantial dependence on the electrochemically applied potential. As a result of the structural dynamics a considerable Raman red-shift of 17.6 cm⁻¹ was observed during metalation. Linewidth changes were used to evaluate the expansion caused by metalation, which in case of sodium and potassium were found to be minimal compared to lithium. Based on the spectroscopic and electrochemical results, a mechanism for the de-/intercalation of lithium, sodium and potassium is proposed which includes alloying in few-layer 2D SnS₂ materials and the generation of point-defects.

Freie Schlagworte: 2D anode, SnS₂ , Operando Raman, TMD, alkali-ion-batteries, impedance spectroscopy
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-228306
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 07 Fachbereich Chemie
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Physikalische Chemie
Hinterlegungsdatum: 23 Dez 2022 14:00
Letzte Änderung: 28 Dez 2022 07:20
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen