TU Darmstadt / ULB / TUbiblio

Interconversion of W and Greenberger-Horne-Zeilinger states for Ising-coupled qubits with transverse global control

Stojanovic, Vladimir M. ; Nauth, Julian (2022)
Interconversion of W and Greenberger-Horne-Zeilinger states for Ising-coupled qubits with transverse global control.
In: Physical Review A, 106 (5)
doi: 10.1103/PhysRevA.106.052613
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Interconversions of W and Greenberger-Horne-Zeilinger states in various physical systems have recently been attracting considerable attention. We address this problem in the fairly general physical setting of qubit arrays with long-ranged (all-to-all) Ising-type qubit-qubit interaction, which are simultaneously acted upon by transverse Zeeman-type global control fields. Motivated in part by a recent Lie-algebraic result that implies state-to-state controllability of such a system for an arbitrary pair of states that are invariant with respect to qubit permutations, we present a detailed investigation of the state-interconversion problem in the three-qubit case. The envisioned interconversion protocol has the form of a pulse sequence that consists of two instantaneous (δ-shaped) control pulses, each of them corresponding to a global qubit rotation, and an Ising-interaction pulse of finite duration between them. Its construction relies heavily on the use of the (four-dimensional) permutation-invariant subspace (symmetric sector) of the three-qubit Hilbert space. In order to demonstrate the viability of the proposed state-interconversion scheme, we provide a detailed analysis of the robustness of the underlying pulse sequence to systematic errors, i.e., deviations from the optimal values of its five characteristic parameters.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Stojanovic, Vladimir M. ; Nauth, Julian
Art des Eintrags: Bibliographie
Titel: Interconversion of W and Greenberger-Horne-Zeilinger states for Ising-coupled qubits with transverse global control
Sprache: Englisch
Publikationsjahr: 30 November 2022
Verlag: APS Physics
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physical Review A
Jahrgang/Volume einer Zeitschrift: 106
(Heft-)Nummer: 5
DOI: 10.1103/PhysRevA.106.052613
Zugehörige Links:
Kurzbeschreibung (Abstract):

Interconversions of W and Greenberger-Horne-Zeilinger states in various physical systems have recently been attracting considerable attention. We address this problem in the fairly general physical setting of qubit arrays with long-ranged (all-to-all) Ising-type qubit-qubit interaction, which are simultaneously acted upon by transverse Zeeman-type global control fields. Motivated in part by a recent Lie-algebraic result that implies state-to-state controllability of such a system for an arbitrary pair of states that are invariant with respect to qubit permutations, we present a detailed investigation of the state-interconversion problem in the three-qubit case. The envisioned interconversion protocol has the form of a pulse sequence that consists of two instantaneous (δ-shaped) control pulses, each of them corresponding to a global qubit rotation, and an Ising-interaction pulse of finite duration between them. Its construction relies heavily on the use of the (four-dimensional) permutation-invariant subspace (symmetric sector) of the three-qubit Hilbert space. In order to demonstrate the viability of the proposed state-interconversion scheme, we provide a detailed analysis of the robustness of the underlying pulse sequence to systematic errors, i.e., deviations from the optimal values of its five characteristic parameters.

Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Angewandte Physik
05 Fachbereich Physik > Institut für Angewandte Physik > Theoretische Quantenphysik
Hinterlegungsdatum: 05 Dez 2022 09:03
Letzte Änderung: 15 Aug 2023 09:33
PPN: 510635415
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen