TU Darmstadt / ULB / TUbiblio

Frequency-Dependent Ultrasonic Stimulation of Poly(N-isopropylacrylamide) Microgels in Water

Razavi, Atieh ; Rutsch, Matthias ; Wismath, Sonja ; Kupnik, Mario ; Klitzing, Regine von ; Rahimzadeh, Amin (2022)
Frequency-Dependent Ultrasonic Stimulation of Poly(N-isopropylacrylamide) Microgels in Water.
In: Gels, 2022, 8 (10)
doi: 10.26083/tuprints-00022833
Artikel, Zweitveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

As a novel stimulus, we use high-frequency ultrasonic waves to provide the required energy for breaking hydrogen bonds between Poly(N-isopropylacrylamide) (PNIPAM) and water molecules while the solution temperature is maintained below the volume phase transition temperature (VPTT = 32 °C). Ultrasonic waves propagate through the solution and their energy will be absorbed due to the liquid viscosity. The absorbed energy partially leads to the generation of a streaming flow and the rest will be spent to break the hydrogen bonds. Therefore, the microgels collapse and become insoluble in water and agglomerate, resulting in solution turbidity. We use turbidity to quantify the ultrasound energy absorption and show that the acousto-response of PNIPAM microgels is a temporal phenomenon that depends on the duration of the actuation. Increasing the solution concentration leads to a faster turbidity evolution. Furthermore, an increase in ultrasound frequency leads to an increase in the breakage of more hydrogen bonds within a certain time and thus faster turbidity evolution. This is due to the increase in ultrasound energy absorption by liquids at higher frequencies.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Razavi, Atieh ; Rutsch, Matthias ; Wismath, Sonja ; Kupnik, Mario ; Klitzing, Regine von ; Rahimzadeh, Amin
Art des Eintrags: Zweitveröffentlichung
Titel: Frequency-Dependent Ultrasonic Stimulation of Poly(N-isopropylacrylamide) Microgels in Water
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Gels
Jahrgang/Volume einer Zeitschrift: 8
(Heft-)Nummer: 10
Kollation: 8 Seiten
DOI: 10.26083/tuprints-00022833
URL / URN: https://tuprints.ulb.tu-darmstadt.de/22833
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

As a novel stimulus, we use high-frequency ultrasonic waves to provide the required energy for breaking hydrogen bonds between Poly(N-isopropylacrylamide) (PNIPAM) and water molecules while the solution temperature is maintained below the volume phase transition temperature (VPTT = 32 °C). Ultrasonic waves propagate through the solution and their energy will be absorbed due to the liquid viscosity. The absorbed energy partially leads to the generation of a streaming flow and the rest will be spent to break the hydrogen bonds. Therefore, the microgels collapse and become insoluble in water and agglomerate, resulting in solution turbidity. We use turbidity to quantify the ultrasound energy absorption and show that the acousto-response of PNIPAM microgels is a temporal phenomenon that depends on the duration of the actuation. Increasing the solution concentration leads to a faster turbidity evolution. Furthermore, an increase in ultrasound frequency leads to an increase in the breakage of more hydrogen bonds within a certain time and thus faster turbidity evolution. This is due to the increase in ultrasound energy absorption by liquids at higher frequencies.

Freie Schlagworte: poly(N-isopropylacrylamide), microgels, ultrasound, turbidity, hydrogen bond, acousto-responsive
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-228332
Zusätzliche Informationen:

This article belongs to the Special Issue Thermoresponsive Microgels

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Mess- und Sensortechnik
05 Fachbereich Physik
05 Fachbereich Physik > Institut für Physik Kondensierter Materie (IPKM)
05 Fachbereich Physik > Institut für Physik Kondensierter Materie (IPKM) > Soft Matter at Interfaces (SMI)
Hinterlegungsdatum: 07 Nov 2022 12:03
Letzte Änderung: 09 Nov 2022 09:27
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen