TU Darmstadt / ULB / TUbiblio

A mechanically strong and ductile soft magnet with extremely low coercivity

Han, Liuliu ; Maccari, Fernando ; Souza Filho, Isnaldi R. ; Peter, Nicolas J. ; Wei, Ye ; Gault, Baptiste ; Gutfleisch, Oliver ; Li, Zhiming ; Raabe, Dierk (2022)
A mechanically strong and ductile soft magnet with extremely low coercivity.
In: Nature, 608 (7922)
doi: 10.1038/s41586-022-04935-3
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Soft magnetic materials (SMMs) serve in electrical applications and sustainable energy supply, allowing magnetic flux variation in response to changes in applied magnetic field, at low energy loss1. The electrification of transport, households and manufacturing leads to an increase in energy consumption owing to hysteresis losses2. Therefore, minimizing coercivity, which scales these losses, is crucial3. Yet meeting this target alone is not enough: SMMs in electrical engines must withstand severe mechanical loads; that is, the alloys need high strength and ductility4. This is a fundamental design challenge, as most methods that enhance strength introduce stress fields that can pin magnetic domains, thus increasing coercivity and hysteresis losses5. Here we introduce an approach to overcome this dilemma. We have designed a Fe–Co–Ni–Ta–Al multicomponent alloy (MCA) with ferromagnetic matrix and paramagnetic coherent nanoparticles (about 91 nm in size and around 55% volume fraction). They impede dislocation motion, enhancing strength and ductility. Their small size, low coherency stress and small magnetostatic energy create an interaction volume below the magnetic domain wall width, leading to minimal domain wall pinning, thus maintaining the soft magnetic properties. The alloy has a tensile strength of 1,336 MPa at 54% tensile elongation, extremely low coercivity of 78 A m−1 (less than 1 Oe), moderate saturation magnetization of 100 A m2 kg−1 and high electrical resistivity of 103 μΩ cm.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Han, Liuliu ; Maccari, Fernando ; Souza Filho, Isnaldi R. ; Peter, Nicolas J. ; Wei, Ye ; Gault, Baptiste ; Gutfleisch, Oliver ; Li, Zhiming ; Raabe, Dierk
Art des Eintrags: Bibliographie
Titel: A mechanically strong and ductile soft magnet with extremely low coercivity
Sprache: Englisch
Publikationsjahr: 10 August 2022
Verlag: Nature Publishing Group
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nature
Jahrgang/Volume einer Zeitschrift: 608
(Heft-)Nummer: 7922
DOI: 10.1038/s41586-022-04935-3
Kurzbeschreibung (Abstract):

Soft magnetic materials (SMMs) serve in electrical applications and sustainable energy supply, allowing magnetic flux variation in response to changes in applied magnetic field, at low energy loss1. The electrification of transport, households and manufacturing leads to an increase in energy consumption owing to hysteresis losses2. Therefore, minimizing coercivity, which scales these losses, is crucial3. Yet meeting this target alone is not enough: SMMs in electrical engines must withstand severe mechanical loads; that is, the alloys need high strength and ductility4. This is a fundamental design challenge, as most methods that enhance strength introduce stress fields that can pin magnetic domains, thus increasing coercivity and hysteresis losses5. Here we introduce an approach to overcome this dilemma. We have designed a Fe–Co–Ni–Ta–Al multicomponent alloy (MCA) with ferromagnetic matrix and paramagnetic coherent nanoparticles (about 91 nm in size and around 55% volume fraction). They impede dislocation motion, enhancing strength and ductility. Their small size, low coherency stress and small magnetostatic energy create an interaction volume below the magnetic domain wall width, leading to minimal domain wall pinning, thus maintaining the soft magnetic properties. The alloy has a tensile strength of 1,336 MPa at 54% tensile elongation, extremely low coercivity of 78 A m−1 (less than 1 Oe), moderate saturation magnetization of 100 A m2 kg−1 and high electrical resistivity of 103 μΩ cm.

Freie Schlagworte: Ferromagnetism, Magnetic properties and materials
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
Hinterlegungsdatum: 17 Aug 2022 06:37
Letzte Änderung: 02 Jun 2023 10:59
PPN: 498269418
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen