TU Darmstadt / ULB / TUbiblio

Phase-field modelling of paramagnetic austenite–ferromagnetic martensite transformation coupled with mechanics and micromagnetics

Ohmer, Dominik ; Yi, Min ; Gutfleisch, Oliver ; Xu, Bai-Xiang (2023)
Phase-field modelling of paramagnetic austenite–ferromagnetic martensite transformation coupled with mechanics and micromagnetics.
In: International Journal of Solids and Structures, 2022, 238
doi: 10.26083/tuprints-00021033
Artikel, Zweitveröffentlichung, Postprint

Kurzbeschreibung (Abstract)

A three-dimensional phase-field model is proposed for simulating the magnetic martensitic phase transformation. The model considers a paramagnetic cubic austenite to ferromagnetic tetragonal martensite transition, as it occurs in magnetic Heusler alloys like Ni2 MnGa, and is based on a Landau 2-3-4 polynomial with temperature dependent coefficients. The paramagnetic–ferromagnetic transition is recaptured by interpolating the micromagnetic energy as a function of the order parameter for the ferroelastic domains. The model is numerically implemented in real space by finite element (FE) method. FE simulations in the martensitic state show that the model is capable to correctly recapture the ferroelastic and -magnetic microstructures, as well as the influence of external stimuli. Simulation results indicate that the paramagnetic austenite to ferromagnetic martensite transition shifts towards higher temperatures when a magnetic field or compressive stress is applied. The dependence of the phase transition temperature shift on the strength of the external stimulus is uncovered as well. Simulation of the phase transition in magnetocaloric materials is of high interest for the development of energy-efficient magnetocaloric cooling devices.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Ohmer, Dominik ; Yi, Min ; Gutfleisch, Oliver ; Xu, Bai-Xiang
Art des Eintrags: Zweitveröffentlichung
Titel: Phase-field modelling of paramagnetic austenite–ferromagnetic martensite transformation coupled with mechanics and micromagnetics
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal of Solids and Structures
Jahrgang/Volume einer Zeitschrift: 238
Kollation: 36 Seiten
DOI: 10.26083/tuprints-00021033
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21033
Zugehörige Links:
Herkunft: Zweitveröffentlichung
Kurzbeschreibung (Abstract):

A three-dimensional phase-field model is proposed for simulating the magnetic martensitic phase transformation. The model considers a paramagnetic cubic austenite to ferromagnetic tetragonal martensite transition, as it occurs in magnetic Heusler alloys like Ni2 MnGa, and is based on a Landau 2-3-4 polynomial with temperature dependent coefficients. The paramagnetic–ferromagnetic transition is recaptured by interpolating the micromagnetic energy as a function of the order parameter for the ferroelastic domains. The model is numerically implemented in real space by finite element (FE) method. FE simulations in the martensitic state show that the model is capable to correctly recapture the ferroelastic and -magnetic microstructures, as well as the influence of external stimuli. Simulation results indicate that the paramagnetic austenite to ferromagnetic martensite transition shifts towards higher temperatures when a magnetic field or compressive stress is applied. The dependence of the phase transition temperature shift on the strength of the external stimulus is uncovered as well. Simulation of the phase transition in magnetocaloric materials is of high interest for the development of energy-efficient magnetocaloric cooling devices.

Freie Schlagworte: phase-field model, micromagnetics, first-order phase transition
Status: Postprint
URN: urn:nbn:de:tuda-tuprints-210333
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
500 Naturwissenschaften und Mathematik > 530 Physik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
Hinterlegungsdatum: 04 Aug 2022 11:34
Letzte Änderung: 05 Aug 2022 05:58
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen