TU Darmstadt / ULB / TUbiblio

Light propagation and atom interferometry in gravity and dilaton fields

Di Pumpo, Fabio ; Friedrich, Alexander ; Geyer, Andreas ; Ufrecht, Christian ; Giese, Enno (2022)
Light propagation and atom interferometry in gravity and dilaton fields.
In: Physical Review D, 105 (8)
doi: 10.1103/PhysRevD.105.084065
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Dark matter or violations of the Einstein equivalence principle influence the motion of atoms, their internal states as well as electromagnetic fields, thus causing a signature in the signal of atomic detectors. To model such new physics, we introduce dilaton fields and study the modified propagation of light used to manipulate atoms in light-pulse atom interferometers. Their interference signal is dominated by the matter’s coupling to gravity and the dilaton. Even though the electromagnetic field contributes to the phase, no additional dilaton-dependent effect can be observed. However, the light’s propagation in gravity enters via a modified momentum transfer and its finite speed. For illustration, we discuss effects from light propagation and the dilaton on different atom-interferometric setups, including gradiometers, equivalence principle tests, and dark matter detection.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Di Pumpo, Fabio ; Friedrich, Alexander ; Geyer, Andreas ; Ufrecht, Christian ; Giese, Enno
Art des Eintrags: Bibliographie
Titel: Light propagation and atom interferometry in gravity and dilaton fields
Sprache: Englisch
Publikationsjahr: 15 April 2022
Verlag: APS Physics
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physical Review D
Jahrgang/Volume einer Zeitschrift: 105
(Heft-)Nummer: 8
DOI: 10.1103/PhysRevD.105.084065
URL / URN: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.0...
Kurzbeschreibung (Abstract):

Dark matter or violations of the Einstein equivalence principle influence the motion of atoms, their internal states as well as electromagnetic fields, thus causing a signature in the signal of atomic detectors. To model such new physics, we introduce dilaton fields and study the modified propagation of light used to manipulate atoms in light-pulse atom interferometers. Their interference signal is dominated by the matter’s coupling to gravity and the dilaton. Even though the electromagnetic field contributes to the phase, no additional dilaton-dependent effect can be observed. However, the light’s propagation in gravity enters via a modified momentum transfer and its finite speed. For illustration, we discuss effects from light propagation and the dilaton on different atom-interferometric setups, including gradiometers, equivalence principle tests, and dark matter detection.

Zusätzliche Informationen:

Art.No.: 084065

Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Angewandte Physik
05 Fachbereich Physik > Institut für Angewandte Physik > Theoretische Quantenoptik
05 Fachbereich Physik > Institut für Angewandte Physik > Theoretische Quantenphysik
Hinterlegungsdatum: 18 Jul 2022 09:19
Letzte Änderung: 02 Dez 2022 08:23
PPN: 502234970
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen