TU Darmstadt / ULB / TUbiblio

Advancing Radiation-Detected Resonance Ionization towards Heavier Elements and More Exotic Nuclides

Warbinek, Jessica ; Anđelić, Brankica ; Block, Michael ; Chhetri, Premaditya ; Claessens, Arno ; Ferrer, Rafael ; Giacoppo, Francesca ; Kaleja, Oliver ; Kieck, Tom ; Kim, EunKang ; Laatiaoui, Mustapha ; Lantis, Jeremy ; Mistry, Andrew ; Münzberg, Danny ; Nothhelfer, Steven ; Raeder, Sebastian ; Rey-Herme, Emmanuel ; Rickert, Elisabeth ; Romans, Jekabs ; Romero-Romero, Elisa ; Vandebrouck, Marine ; Duppen, Piet van ; Walther, Thomas (2022)
Advancing Radiation-Detected Resonance Ionization towards Heavier Elements and More Exotic Nuclides.
In: Atoms, 2022, 10 (2)
doi: 10.26083/tuprints-00021280
Artikel, Zweitveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

RAdiation-Detected Resonance Ionization Spectroscopy (RADRIS) is a versatile method for highly sensitive laser spectroscopy studies of the heaviest actinides. Most of these nuclides need to be produced at accelerator facilities in fusion-evaporation reactions and are studied immediately after their production and separation from the primary beam due to their short half-lives and low production rates of only a few atoms per second or less. Only recently, the first laser spectroscopic investigation of nobelium (Z=102) was performed by applying the RADRIS technique in a buffer-gas-filled stopping cell at the GSI in Darmstadt, Germany. To expand this technique to other nobelium isotopes and for the search for atomic levels in the heaviest actinide element, lawrencium (Z=103), the sensitivity of the RADRIS setup needed to be further improved. Therefore, a new movable double-detector setup was developed, which enhances the overall efficiency by approximately 65% compared to the previously used single-detector setup. Further development work was performed to enable the study of longer-lived (t₁/₂>1 h) and shorter-lived nuclides (t₁/₂<1 s) with the RADRIS method. With a new rotatable multi-detector design, the long-lived isotope 254Fm (t₁/₂=3.2 h) becomes within reach for laser spectroscopy. Upcoming experiments will also tackle the short-lived isotope 251No (t₁/₂=0.8 s) by applying a newly implemented short RADRIS measurement cycle.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Warbinek, Jessica ; Anđelić, Brankica ; Block, Michael ; Chhetri, Premaditya ; Claessens, Arno ; Ferrer, Rafael ; Giacoppo, Francesca ; Kaleja, Oliver ; Kieck, Tom ; Kim, EunKang ; Laatiaoui, Mustapha ; Lantis, Jeremy ; Mistry, Andrew ; Münzberg, Danny ; Nothhelfer, Steven ; Raeder, Sebastian ; Rey-Herme, Emmanuel ; Rickert, Elisabeth ; Romans, Jekabs ; Romero-Romero, Elisa ; Vandebrouck, Marine ; Duppen, Piet van ; Walther, Thomas
Art des Eintrags: Zweitveröffentlichung
Titel: Advancing Radiation-Detected Resonance Ionization towards Heavier Elements and More Exotic Nuclides
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Atoms
Jahrgang/Volume einer Zeitschrift: 10
(Heft-)Nummer: 2
Kollation: 12 Seiten
DOI: 10.26083/tuprints-00021280
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21280
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

RAdiation-Detected Resonance Ionization Spectroscopy (RADRIS) is a versatile method for highly sensitive laser spectroscopy studies of the heaviest actinides. Most of these nuclides need to be produced at accelerator facilities in fusion-evaporation reactions and are studied immediately after their production and separation from the primary beam due to their short half-lives and low production rates of only a few atoms per second or less. Only recently, the first laser spectroscopic investigation of nobelium (Z=102) was performed by applying the RADRIS technique in a buffer-gas-filled stopping cell at the GSI in Darmstadt, Germany. To expand this technique to other nobelium isotopes and for the search for atomic levels in the heaviest actinide element, lawrencium (Z=103), the sensitivity of the RADRIS setup needed to be further improved. Therefore, a new movable double-detector setup was developed, which enhances the overall efficiency by approximately 65% compared to the previously used single-detector setup. Further development work was performed to enable the study of longer-lived (t₁/₂>1 h) and shorter-lived nuclides (t₁/₂<1 s) with the RADRIS method. With a new rotatable multi-detector design, the long-lived isotope 254Fm (t₁/₂=3.2 h) becomes within reach for laser spectroscopy. Upcoming experiments will also tackle the short-lived isotope 251No (t₁/₂=0.8 s) by applying a newly implemented short RADRIS measurement cycle.

Freie Schlagworte: laser spectroscopy, resonance ionization, atomic level scheme, gas cell, radiation detection, heavy actinides
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-212806
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Angewandte Physik
05 Fachbereich Physik > Institut für Kernphysik
Hinterlegungsdatum: 06 Mai 2022 11:19
Letzte Änderung: 09 Mai 2022 09:04
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen