TU Darmstadt / ULB / TUbiblio

A Strategy towards Light-Absorbing Coatings Based on Optically Black Nanoporous Alumina with Tailored Disorder

Pashchanka, Mikhail ; Cherkashinin, Gennady (2022)
A Strategy towards Light-Absorbing Coatings Based on Optically Black Nanoporous Alumina with Tailored Disorder.
In: Materials, 2022, 14 (19)
doi: 10.26083/tuprints-00019973
Artikel, Zweitveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

This work provides a conceptually new way of thinking about the light-absorbing mechanism in additive-free black porous anodic alumina (black PAA, or b-PAA) layers obtained via “burning” anodizing regime. The new insight into the controllable photonic effects in PAA allows the implementation of the optical blackening method based on the deliberate randomization of the initially well-ordered nanopore arrangement. The proposed black coloration mechanism rests solely on the destructive interference of light after its multiple scattering. Similar effects have been earlier considered for some natural or artificially created biomimetic structures (e.g., the so-called “moth eye effect”, or the coloration mechanism in the Neurothemis tullia dragonfly wings). Comprehensive analysis confirmed that the chemical composition of b-PAA has only a minor influence on the color changes and the optical density increase, and that the light-absorbing properties most likely result from the structural effects. The new functional 2D materials exhibit strong adhesion to aluminum surface, are cost-effective and suitable for application under harsh thermal or UV-light conditions. They are potentially useful for manufacturing of optical devices or heat-resistant coatings in aerospace technologies, as well as solid supports for biological filtration and fluorescence imaging.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Pashchanka, Mikhail ; Cherkashinin, Gennady
Art des Eintrags: Zweitveröffentlichung
Titel: A Strategy towards Light-Absorbing Coatings Based on Optically Black Nanoporous Alumina with Tailored Disorder
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Materials
Jahrgang/Volume einer Zeitschrift: 14
(Heft-)Nummer: 19
Kollation: 19 Seiten
DOI: 10.26083/tuprints-00019973
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19973
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

This work provides a conceptually new way of thinking about the light-absorbing mechanism in additive-free black porous anodic alumina (black PAA, or b-PAA) layers obtained via “burning” anodizing regime. The new insight into the controllable photonic effects in PAA allows the implementation of the optical blackening method based on the deliberate randomization of the initially well-ordered nanopore arrangement. The proposed black coloration mechanism rests solely on the destructive interference of light after its multiple scattering. Similar effects have been earlier considered for some natural or artificially created biomimetic structures (e.g., the so-called “moth eye effect”, or the coloration mechanism in the Neurothemis tullia dragonfly wings). Comprehensive analysis confirmed that the chemical composition of b-PAA has only a minor influence on the color changes and the optical density increase, and that the light-absorbing properties most likely result from the structural effects. The new functional 2D materials exhibit strong adhesion to aluminum surface, are cost-effective and suitable for application under harsh thermal or UV-light conditions. They are potentially useful for manufacturing of optical devices or heat-resistant coatings in aerospace technologies, as well as solid supports for biological filtration and fluorescence imaging.

Freie Schlagworte: order–disorder phenomena, anodizing, X-ray photoelectron spectroscopy (XPS), nanostructured materials, photonic light entrapping
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-199734
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
07 Fachbereich Chemie
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Anorganische Chemie
Hinterlegungsdatum: 02 Mai 2022 11:29
Letzte Änderung: 03 Mai 2022 05:04
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen