TU Darmstadt / ULB / TUbiblio

Reducing Uncertainty in Shunt Damping by Model-Predictive Product Stiffness Control in a Single Point Incremental Forming Process

Hoppe, Florian ; Knoll, Maximilian ; Götz, Benedict ; Schaeffner, Maximilian ; Groche, Peter (2022)
Reducing Uncertainty in Shunt Damping by Model-Predictive Product Stiffness Control in a Single Point Incremental Forming Process.
In: Applied Mechanics and Materials, 885
doi: 10.26083/tuprints-00020444
Artikel, Zweitveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

The stiffness of metal formed products strongly affects the dynamic behavior of structures in which they are integrated. Forming processes underlie short and long-term variations which cause the stiffness to be uncertain.In the application of resonant shunted piezoelectric transducers for vibration attenuation, uncertain stiffness may cause significant reduction in the vibration attenuation performance due to imprecise tuning. In the past, large efforts were made to control one or more geometrical feature of products while weightier features that cause uncertainty have not been addressed.In this paper, a single point incremental forming process of a membrane-like spring element on a servo press with a 3 degrees of freedom drive system is investigated. This spring element is used in a beam support for lateral vibration attenuation with resonant shunted transducers as well as axial buckling stabilization.To reduce uncertainty caused by process variations, an offline closed-loop control of product stiffness is presented. Different product and forming criteria are integrated into a control approach based on an optimization routine. By making use of a model-based prediction of the product properties, the approach shows how to realize a multi-objective control.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Hoppe, Florian ; Knoll, Maximilian ; Götz, Benedict ; Schaeffner, Maximilian ; Groche, Peter
Art des Eintrags: Zweitveröffentlichung
Titel: Reducing Uncertainty in Shunt Damping by Model-Predictive Product Stiffness Control in a Single Point Incremental Forming Process
Sprache: Englisch
Publikationsjahr: 2022
Verlag: Trans Tech Publications
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Applied Mechanics and Materials
Jahrgang/Volume einer Zeitschrift: 885
DOI: 10.26083/tuprints-00020444
URL / URN: https://doi.org/10.4028/www.scientific.net/AMM.885.35
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

The stiffness of metal formed products strongly affects the dynamic behavior of structures in which they are integrated. Forming processes underlie short and long-term variations which cause the stiffness to be uncertain.In the application of resonant shunted piezoelectric transducers for vibration attenuation, uncertain stiffness may cause significant reduction in the vibration attenuation performance due to imprecise tuning. In the past, large efforts were made to control one or more geometrical feature of products while weightier features that cause uncertainty have not been addressed.In this paper, a single point incremental forming process of a membrane-like spring element on a servo press with a 3 degrees of freedom drive system is investigated. This spring element is used in a beam support for lateral vibration attenuation with resonant shunted transducers as well as axial buckling stabilization.To reduce uncertainty caused by process variations, an offline closed-loop control of product stiffness is presented. Different product and forming criteria are integrated into a control approach based on an optimization routine. By making use of a model-based prediction of the product properties, the approach shows how to realize a multi-objective control.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-204442
Zusätzliche Informationen:

Keywords: Closed-Loop Control, Forming, Prediction, Shunt Damping

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionstechnik und Umformmaschinen (PtU)
16 Fachbereich Maschinenbau > Fachgebiet Systemzuverlässigkeit, Adaptronik und Maschinenakustik (SAM)
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 805: Beherrschung von Unsicherheit in lasttragenden Systemen des Maschinenbaus
Hinterlegungsdatum: 10 Feb 2022 13:30
Letzte Änderung: 11 Feb 2022 07:44
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen