TU Darmstadt / ULB / TUbiblio

Dislocation-mediated electronic conductivity in rutile

Muhammad, Qaisar Khushi ; Bishara, Hanna ; Porz, Lukas ; Dietz, Christian ; Ghidelli, M. ; Dehm, G. ; Frömling, Till (2022)
Dislocation-mediated electronic conductivity in rutile.
In: Materials Today Nano, 17
doi: 10.1016/j.mtnano.2021.100171
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

It has been recently shown that doping-like properties can be introduced into functional ceramics by inducing dislocations. Especially for TiO2, donor and acceptor-like behavior were observed depending on the type of introduced mesoscopic dislocation network. However, these early reports could not fully elucidate the mechanism behind it. In this work, we rationalize the electrical properties of dislocations by targeted microelectrode impedance measurements, local conductivity atomic force microscopy, and Kelvin probe force microscopy on deformed single crystals, comparing dislocation-rich and deficient regions. With the help of finite element method calculations, a semi-quantitative model for the effect of dislocations on the macroscopic electrical properties is developed. The model describes the dislocation bundles as highly conductive regions in which respective space charges overlap and induce temperature-independent, highly stable electronic conductivity. We illustrate the mechanism behind unique electrical properties tailored by introducing dislocations and believe that these results are the cornerstone in developing dislocation-tuned functionality in ceramics.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Muhammad, Qaisar Khushi ; Bishara, Hanna ; Porz, Lukas ; Dietz, Christian ; Ghidelli, M. ; Dehm, G. ; Frömling, Till
Art des Eintrags: Bibliographie
Titel: Dislocation-mediated electronic conductivity in rutile
Sprache: Englisch
Publikationsjahr: 17 Januar 2022
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Materials Today Nano
Jahrgang/Volume einer Zeitschrift: 17
DOI: 10.1016/j.mtnano.2021.100171
Kurzbeschreibung (Abstract):

It has been recently shown that doping-like properties can be introduced into functional ceramics by inducing dislocations. Especially for TiO2, donor and acceptor-like behavior were observed depending on the type of introduced mesoscopic dislocation network. However, these early reports could not fully elucidate the mechanism behind it. In this work, we rationalize the electrical properties of dislocations by targeted microelectrode impedance measurements, local conductivity atomic force microscopy, and Kelvin probe force microscopy on deformed single crystals, comparing dislocation-rich and deficient regions. With the help of finite element method calculations, a semi-quantitative model for the effect of dislocations on the macroscopic electrical properties is developed. The model describes the dislocation bundles as highly conductive regions in which respective space charges overlap and induce temperature-independent, highly stable electronic conductivity. We illustrate the mechanism behind unique electrical properties tailored by introducing dislocations and believe that these results are the cornerstone in developing dislocation-tuned functionality in ceramics.

Freie Schlagworte: Dislocations, One-dimensional doping, Microelectrodes, Space charge, Electronic conductivity
Zusätzliche Informationen:

Artikel-ID: 100171

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Physics of Surfaces
Hinterlegungsdatum: 18 Jan 2022 06:43
Letzte Änderung: 19 Jan 2022 06:25
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen