TU Darmstadt / ULB / TUbiblio

Investigation of the transition from single to group coal particle combustion using high-speed scanning OH-LIF and diffuse backlight-illumination

Li, Tao ; Geschwindner, Christopher ; Köser, Jan ; Schiemann, Martin ; Dreizler, Andreas ; Böhm, Benjamin (2021)
Investigation of the transition from single to group coal particle combustion using high-speed scanning OH-LIF and diffuse backlight-illumination.
In: Proceedings of the Combustion Institute, 38 (3)
doi: 10.1016/j.proci.2020.06.314
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The transition from single to group high-volatile bituminous (hvb) coal particle combustion is experimentally investigated in a laminar flow reactor using state-of-the-art laser diagnostics. Simultaneous volumetric OH-LIF imaging using a novel laser scanning technique is combined with time-resolved diffuse backlight-illumination (DBI) providing fundamental insights into flame topologies. Three-dimensional visualizations of volatile flames are first demonstrated on single particle combustion and then applied to characterize the flame topology associated with group particle combustion. The particle number density (PND) determined by instantaneous DBI images covers a wide range from the individual particle combustion to group combustion enabling the determination of transitional effects. While an enclosed volatile flame is observed with dominant spherical structures at low PND, enveloping flames surrounding non-flammable regions reveal distinct features as PND increases. The corresponding physical process is described by exploring the effect of local gas temperatures. The particle velocity affected by the inter-particle and particle-gas interaction is analyzed along the axial and radial direction. The ignition delay time increases gradually as PND increases. The non-flammable region is quantified by evaluating the non-flammable volume ratio Rnf. The non-flammability becomes pronounced if PND exceeds a limit of approximately 0.37mm-3, which corresponds to an inter-particle distance of 4 dP in this study.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Li, Tao ; Geschwindner, Christopher ; Köser, Jan ; Schiemann, Martin ; Dreizler, Andreas ; Böhm, Benjamin
Art des Eintrags: Bibliographie
Titel: Investigation of the transition from single to group coal particle combustion using high-speed scanning OH-LIF and diffuse backlight-illumination
Sprache: Englisch
Publikationsjahr: 2021
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Proceedings of the Combustion Institute
Jahrgang/Volume einer Zeitschrift: 38
(Heft-)Nummer: 3
DOI: 10.1016/j.proci.2020.06.314
URL / URN: https://www.sciencedirect.com/science/article/pii/S154074892...
Kurzbeschreibung (Abstract):

The transition from single to group high-volatile bituminous (hvb) coal particle combustion is experimentally investigated in a laminar flow reactor using state-of-the-art laser diagnostics. Simultaneous volumetric OH-LIF imaging using a novel laser scanning technique is combined with time-resolved diffuse backlight-illumination (DBI) providing fundamental insights into flame topologies. Three-dimensional visualizations of volatile flames are first demonstrated on single particle combustion and then applied to characterize the flame topology associated with group particle combustion. The particle number density (PND) determined by instantaneous DBI images covers a wide range from the individual particle combustion to group combustion enabling the determination of transitional effects. While an enclosed volatile flame is observed with dominant spherical structures at low PND, enveloping flames surrounding non-flammable regions reveal distinct features as PND increases. The corresponding physical process is described by exploring the effect of local gas temperatures. The particle velocity affected by the inter-particle and particle-gas interaction is analyzed along the axial and radial direction. The ignition delay time increases gradually as PND increases. The non-flammable region is quantified by evaluating the non-flammable volume ratio Rnf. The non-flammability becomes pronounced if PND exceeds a limit of approximately 0.37mm-3, which corresponds to an inter-particle distance of 4 dP in this study.

Freie Schlagworte: Coal particle volatile combustion, Group particle combustion, High-speed laser-induced fluorescence, Laser scanning, Diffuse backlight-illumination
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Reaktive Strömungen und Messtechnik (RSM)
TU-Projekte: DFG|TRR129|TP B07 Dr. Böhm TRR1
Hinterlegungsdatum: 27 Okt 2021 06:58
Letzte Änderung: 13 Sep 2022 11:46
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen