TU Darmstadt / ULB / TUbiblio

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation

Araslanov, Nikita ; Roth, Stefan (2021):
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15384-15394,
IEEE, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2021), virtual Conference, 19.-25.06.2021, [Conference or Workshop Item]

Item Type: Conference or Workshop Item
Erschienen: 2021
Creators: Araslanov, Nikita ; Roth, Stefan
Title: Self-supervised Augmentation Consistency for Adapting Semantic Segmentation
Language: English
Title of Book: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Publisher: IEEE
Uncontrolled Keywords: emergenCITY_INF
Divisions: 20 Department of Computer Science
20 Department of Computer Science > Visual Inference
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
Event Title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2021)
Event Location: virtual Conference
Event Dates: 19.-25.06.2021
Date Deposited: 23 Sep 2021 11:30
Corresponding Links:
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details