TU Darmstadt / ULB / TUbiblio

Nanoindentation of Nanoglasses Tested by Molecular Dynamics Simulations: Influence of Structural Relaxation and Chemical Segregation on the Mechanical Response

Adjaoud, Omar ; Albe, Karsten (2021)
Nanoindentation of Nanoglasses Tested by Molecular Dynamics Simulations: Influence of Structural Relaxation and Chemical Segregation on the Mechanical Response.
In: Frontiers in Materials, 2021, 8
doi: 10.26083/tuprints-00019353
Artikel, Zweitveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

We presentmolecular dynamics simulations of nanoindentation in order to investigate the effects of segregation and structural relaxation on the mechanical properties of Cu₆₄Zr₃₆ nanoglasses prepared by particle consolidation and long-time annealing. Our analysis of load-displacement curves shows that the effective elastic modulus of nanoglasses is lower than that of their homogeneous metallic glass counterpart. This is mainly because of the defective short-range order present in the glass-glass interface, but to a lesser extend due to chemical inhomogeneities. Structural relaxation obtained by long-time annealing (500 ns) at 0.8 Tg leads to a shift from a homogeneous deformation to a mix of homogeneous deformation and shear bands. The obtained hardness values of annealed nanoglass are comparable to those of homogenous glass samples, but significantly higher as compared to juvenile as-prepared nanoglass samples. The results are discussed in the context of recent nanonindentation experiments.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Adjaoud, Omar ; Albe, Karsten
Art des Eintrags: Zweitveröffentlichung
Titel: Nanoindentation of Nanoglasses Tested by Molecular Dynamics Simulations: Influence of Structural Relaxation and Chemical Segregation on the Mechanical Response
Sprache: Englisch
Publikationsjahr: 2021
Publikationsdatum der Erstveröffentlichung: 2021
Verlag: Frontiers
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Frontiers in Materials
Jahrgang/Volume einer Zeitschrift: 8
Kollation: 8 Seiten
DOI: 10.26083/tuprints-00019353
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19353
Zugehörige Links:
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

We presentmolecular dynamics simulations of nanoindentation in order to investigate the effects of segregation and structural relaxation on the mechanical properties of Cu₆₄Zr₃₆ nanoglasses prepared by particle consolidation and long-time annealing. Our analysis of load-displacement curves shows that the effective elastic modulus of nanoglasses is lower than that of their homogeneous metallic glass counterpart. This is mainly because of the defective short-range order present in the glass-glass interface, but to a lesser extend due to chemical inhomogeneities. Structural relaxation obtained by long-time annealing (500 ns) at 0.8 Tg leads to a shift from a homogeneous deformation to a mix of homogeneous deformation and shear bands. The obtained hardness values of annealed nanoglass are comparable to those of homogenous glass samples, but significantly higher as compared to juvenile as-prepared nanoglass samples. The results are discussed in the context of recent nanonindentation experiments.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-193530
Zusätzliche Informationen:

Keywords: metallic glass, nanoglass, glass-glass interfaces, structural relaxation, segregation, nanoindentation, mechanical properties, molecular dynamics

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
Hinterlegungsdatum: 25 Aug 2021 12:26
Letzte Änderung: 30 Aug 2021 06:49
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen