TU Darmstadt / ULB / TUbiblio

Lower limb joint biomechanics-based identification of gait transitions in between level walking and stair ambulation

Grimmer, Martin ; Zeiss, Julian ; Weigand, Florian ; Zhao, Guoping ; Lamm, Sascha ; Steil, Martin ; Heller, Adrian (2021)
Lower limb joint biomechanics-based identification of gait transitions in between level walking and stair ambulation.
In: PLOS ONE, 2020, 15 (9)
doi: 10.26083/tuprints-00019271
Artikel, Zweitveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

Lower limb exoskeletons and lower limb prostheses have the potential to reduce gait limitations during stair ambulation. To develop robotic assistance devices, the biomechanics of stair ambulation and the required transitions to level walking have to be understood. This study aimed to identify the timing of these transitions, to determine if transition phases exist and how long they last, and to investigate if there exists a joint-related order and timing for the start and end of the transitions. Therefore, this study analyzed the kinematics and kinetics of both transitions between level walking and stair ascent, and between level walking and stair descent (12 subjects, 25.4 yrs, 74.6 kg). We found that transitions primarily start within the stance phase and end within the swing phase. Transition phases exist for each limb, all joints (hip, knee, ankle), and types of transitions. They have a mean duration of half of one stride and they do not last longer than one stride. The duration of the transition phase for all joints of a single limb in aggregate is less than 35% of one stride in all but one case. The distal joints initialize stair ascent, while the proximal joints primarily initialize the stair descent transitions. In general, the distal joints complete the transitions first. We believe that energy- and balance-related processes are responsible for the joint-specific transition timing. Regarding the existence of a transition phase for all joints and transitions, we believe that lower limb exoskeleton or prosthetic control concepts should account for these transitions in order to improve the smoothness of the transition and to thus increase the user comfort, safety, and user experience. Our gait data and the identified transition timings can provide a reference for the design and the performance of stair ambulation- related control concepts.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Grimmer, Martin ; Zeiss, Julian ; Weigand, Florian ; Zhao, Guoping ; Lamm, Sascha ; Steil, Martin ; Heller, Adrian
Art des Eintrags: Zweitveröffentlichung
Titel: Lower limb joint biomechanics-based identification of gait transitions in between level walking and stair ambulation
Sprache: Englisch
Publikationsjahr: 2021
Publikationsdatum der Erstveröffentlichung: 2020
Verlag: PLOS
Titel der Zeitschrift, Zeitung oder Schriftenreihe: PLOS ONE
Jahrgang/Volume einer Zeitschrift: 15
(Heft-)Nummer: 9
Kollation: 23 Seiten
DOI: 10.26083/tuprints-00019271
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19271
Zugehörige Links:
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

Lower limb exoskeletons and lower limb prostheses have the potential to reduce gait limitations during stair ambulation. To develop robotic assistance devices, the biomechanics of stair ambulation and the required transitions to level walking have to be understood. This study aimed to identify the timing of these transitions, to determine if transition phases exist and how long they last, and to investigate if there exists a joint-related order and timing for the start and end of the transitions. Therefore, this study analyzed the kinematics and kinetics of both transitions between level walking and stair ascent, and between level walking and stair descent (12 subjects, 25.4 yrs, 74.6 kg). We found that transitions primarily start within the stance phase and end within the swing phase. Transition phases exist for each limb, all joints (hip, knee, ankle), and types of transitions. They have a mean duration of half of one stride and they do not last longer than one stride. The duration of the transition phase for all joints of a single limb in aggregate is less than 35% of one stride in all but one case. The distal joints initialize stair ascent, while the proximal joints primarily initialize the stair descent transitions. In general, the distal joints complete the transitions first. We believe that energy- and balance-related processes are responsible for the joint-specific transition timing. Regarding the existence of a transition phase for all joints and transitions, we believe that lower limb exoskeleton or prosthetic control concepts should account for these transitions in order to improve the smoothness of the transition and to thus increase the user comfort, safety, and user experience. Our gait data and the identified transition timings can provide a reference for the design and the performance of stair ambulation- related control concepts.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-192713
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 700 Künste und Unterhaltung > 796 Sport
Fachbereich(e)/-gebiet(e): 03 Fachbereich Humanwissenschaften
03 Fachbereich Humanwissenschaften > Institut für Sportwissenschaft
03 Fachbereich Humanwissenschaften > Institut für Sportwissenschaft > Sportbiomechanik
Hinterlegungsdatum: 09 Aug 2021 07:55
Letzte Änderung: 16 Aug 2021 04:05
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen