TU Darmstadt / ULB / TUbiblio

Influence of Disc Temperature on Ultrafine, Fine, and Coarse Particle Emissions of Passenger Car Disc Brakes with Organic and Inorganic Pad Binder Materials

Niemann, Hartmut ; Winner, Hermann ; Asbach, Christof ; Kaminski, Heinz ; Frentz, Georg ; Milczarek, Roman (2021):
Influence of Disc Temperature on Ultrafine, Fine, and Coarse Particle Emissions of Passenger Car Disc Brakes with Organic and Inorganic Pad Binder Materials. (Publisher's Version)
In: Atmosphere, 11 (10), MDPI, ISSN 2073-4433,
DOI: 10.26083/tuprints-00019262,
[Article]

Abstract

Passenger car disc brakes are a source of ultrafine, fine, and coarse particles. It is estimated that 21% of total traffic-related PM10 emissions in urban environments originate from airborne brake wear particles. Particle number emission factors are in the magnitude of 1010 km−1 wheel brake during real-world driving conditions. Due to the complexity of the tribological processes and the limited observability of the friction zone between brake disc and pad, the phenomena causing particle emission of disc brakes are only partially understood. To generate a basis for understanding the emission process and, based on this, to clarify which influencing variables have how much potential for reduction measures, one approach consists in the identification and quantification of influencing variables in the form of emission maps. The subject of this publication is the influence of disc brake temperature on ultrafine, fine, and coarse particle emissions, which was investigated with a systematic variation of temperature during single brake events on an enclosed brake dynamometer. The systematic variation of temperature was achieved by increasing or decreasing the disc temperature stepwise which leads to a triangular temperature variation. Two types of brake pads were used with the main distinction in its chemical composition being organic and inorganic binder materials. The critical disc brake temperature for the generation of ultrafine particles based on nucleation is at approximately 180 °C for pads with an organic binder and at approximately 240 °C for pads with inorganic binder materials. Number concentration during those nucleation events decreased for successive events, probably due to aging effects. PM10 emissions increased by factor 2 due to an increase in temperature from 80 °C to 160 °C. The influence of temperature could be only repeatable measured for disc brake temperatures below 180 °C. Above this temperature, the emission behavior was dependent on the temperature history, which indicates also a critical temperature for PM10 relevant emissions but not in an increasing rather than a decreasing manner.

Item Type: Article
Erschienen: 2021
Creators: Niemann, Hartmut ; Winner, Hermann ; Asbach, Christof ; Kaminski, Heinz ; Frentz, Georg ; Milczarek, Roman
Origin: Secondary publication via sponsored Golden Open Access
Status: Publisher's Version
Title: Influence of Disc Temperature on Ultrafine, Fine, and Coarse Particle Emissions of Passenger Car Disc Brakes with Organic and Inorganic Pad Binder Materials
Language: English
Abstract:

Passenger car disc brakes are a source of ultrafine, fine, and coarse particles. It is estimated that 21% of total traffic-related PM10 emissions in urban environments originate from airborne brake wear particles. Particle number emission factors are in the magnitude of 1010 km−1 wheel brake during real-world driving conditions. Due to the complexity of the tribological processes and the limited observability of the friction zone between brake disc and pad, the phenomena causing particle emission of disc brakes are only partially understood. To generate a basis for understanding the emission process and, based on this, to clarify which influencing variables have how much potential for reduction measures, one approach consists in the identification and quantification of influencing variables in the form of emission maps. The subject of this publication is the influence of disc brake temperature on ultrafine, fine, and coarse particle emissions, which was investigated with a systematic variation of temperature during single brake events on an enclosed brake dynamometer. The systematic variation of temperature was achieved by increasing or decreasing the disc temperature stepwise which leads to a triangular temperature variation. Two types of brake pads were used with the main distinction in its chemical composition being organic and inorganic binder materials. The critical disc brake temperature for the generation of ultrafine particles based on nucleation is at approximately 180 °C for pads with an organic binder and at approximately 240 °C for pads with inorganic binder materials. Number concentration during those nucleation events decreased for successive events, probably due to aging effects. PM10 emissions increased by factor 2 due to an increase in temperature from 80 °C to 160 °C. The influence of temperature could be only repeatable measured for disc brake temperatures below 180 °C. Above this temperature, the emission behavior was dependent on the temperature history, which indicates also a critical temperature for PM10 relevant emissions but not in an increasing rather than a decreasing manner.

Journal or Publication Title: Atmosphere
Journal volume: 11
Number: 10
Publisher: MDPI
Collation: 17 Seiten
Divisions: 16 Department of Mechanical Engineering
16 Department of Mechanical Engineering > Institute of Automotive Engineering (FZD)
Date Deposited: 06 Aug 2021 07:20
DOI: 10.26083/tuprints-00019262
Official URL: https://tuprints.ulb.tu-darmstadt.de/19262
URN: urn:nbn:de:tuda-tuprints-192622
Corresponding Links:
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details