TU Darmstadt / ULB / TUbiblio

SiBCN-reduced graphene oxide (rGO) ceramic composites derived from single-source-precursor with enhanced and tunable microwave absorption performance

Chen, Qingqing ; Li, Daxin ; Yang, Zhihua ; Jia, Dechang ; Zhou, Yu ; Riedel, Ralf ; Zhang, Tao ; Gao, Chenguang (2021)
SiBCN-reduced graphene oxide (rGO) ceramic composites derived from single-source-precursor with enhanced and tunable microwave absorption performance.
In: Carbon, 179
doi: 10.1016/j.carbon.2021.03.057
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

SiBCN-reduced graphene oxide (SiBCN-rGO) ceramic composites with different rGO content derived from a single-source precursor were successful synthesized by polymer derived ceramics routes to tune their dielectric properties and electromagnetic wave absorption capacity. SiBCN-rGO ceramic composites with 6 wt% GO annealed at 1300 °C possessed the best microwave absorption performance obtaining the minimum reflection coefficient (RCmin) of −62.71 dB at 10.72 GHz, and the thin thickness of 2.17 mm. Adjusting its thickness to 1.58 mm could obtain the maximum effective absorption bandwidth (RC < −10 dB) of 4.32 GHz. The microwave absorption mechanisms of the as-prepared SiBCN-rGO ceramic composites were mainly attributed to the conductive loss and polarization loss induced by the synergistic effects of amorphous SiBCN matrix, rGO and SiC nanocrystals.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Chen, Qingqing ; Li, Daxin ; Yang, Zhihua ; Jia, Dechang ; Zhou, Yu ; Riedel, Ralf ; Zhang, Tao ; Gao, Chenguang
Art des Eintrags: Bibliographie
Titel: SiBCN-reduced graphene oxide (rGO) ceramic composites derived from single-source-precursor with enhanced and tunable microwave absorption performance
Sprache: Englisch
Publikationsjahr: 1 April 2021
Verlag: Pergamon-Elsevier Science
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Carbon
Jahrgang/Volume einer Zeitschrift: 179
DOI: 10.1016/j.carbon.2021.03.057
URL / URN: https://www.sciencedirect.com/science/article/abs/pii/S00086...
Kurzbeschreibung (Abstract):

SiBCN-reduced graphene oxide (SiBCN-rGO) ceramic composites with different rGO content derived from a single-source precursor were successful synthesized by polymer derived ceramics routes to tune their dielectric properties and electromagnetic wave absorption capacity. SiBCN-rGO ceramic composites with 6 wt% GO annealed at 1300 °C possessed the best microwave absorption performance obtaining the minimum reflection coefficient (RCmin) of −62.71 dB at 10.72 GHz, and the thin thickness of 2.17 mm. Adjusting its thickness to 1.58 mm could obtain the maximum effective absorption bandwidth (RC < −10 dB) of 4.32 GHz. The microwave absorption mechanisms of the as-prepared SiBCN-rGO ceramic composites were mainly attributed to the conductive loss and polarization loss induced by the synergistic effects of amorphous SiBCN matrix, rGO and SiC nanocrystals.

Freie Schlagworte: SiBCN, Single-source-precursor, Dielectric properties, Electromagnetic wave absorption, EMW Absorbing Properties, Dielectric-Properties, Carbon Nanotubes, PDCS-SIBCN; C-N, Interference, Microstructure, Nanostructures, Nanocomposites, Lightweight
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
Hinterlegungsdatum: 14 Jul 2021 05:58
Letzte Änderung: 14 Jul 2021 05:58
PPN:
Projekte: National Natural Science Foundation of China (NSFC), Grant Numbers 52002092, 51832002, China Postdoctoral Science Foundation, Grant Numbers BX20190095, LBH-Z19141, 2019M660072, National Key Research and Development Program of China, grant Number 2017YFB0310400, Advanced Space Propulsion Laboratory of BICE, Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology, Grant Number LabASP-2019-08
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen