TU Darmstadt / ULB / TUbiblio

Hybrid master equation for jump-diffusion approximation of biomolecular reaction networks

Altintan, Derya ; Koeppl, Heinz (2021)
Hybrid master equation for jump-diffusion approximation of biomolecular reaction networks.
In: BIT Numerical Mathematics, 2020, 60 (2)
doi: 10.26083/tuprints-00017586
Artikel, Zweitveröffentlichung, Postprint

Kurzbeschreibung (Abstract)

Cellular reactions have a multi-scale nature in the sense that the abundance of molecular species and the magnitude of reaction rates can vary across orders of magnitude. This diversity naturally leads to hybrid models that combine continuous and discrete modeling regimes. In order to capture this multi-scale nature, we proposed jump-diffusion approximations in a previous study. The key idea was to partition reactions into fast and slow groups, and then to combine a Markov jump updating scheme for the slow group with a diffusion (Langevin) updating scheme for the fast group. In this study we show that the joint probability density function of the jump-diffusion approximation over the reaction counting process satisfies a hybrid master equation that combines terms from the chemical master equation and from the Fokker–Planck equation. Inspired by the method of conditional moments, we propose a efficient method to solve this master equation using the moments of reaction counters of the fast reactions given the reaction counters of the slow reactions. For each time point of interest, we then solve a set of maximum entropy problems in order to recover the conditional probability density from its moments. This finally allows us to reconstruct the complete joint probability density over all reaction counters and hence obtain an approximate solution of the hybrid master equation. Finally, we show the accuracy of the method applied to a simple multi-scale conversion process.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Altintan, Derya ; Koeppl, Heinz
Art des Eintrags: Zweitveröffentlichung
Titel: Hybrid master equation for jump-diffusion approximation of biomolecular reaction networks
Sprache: Englisch
Publikationsjahr: 21 November 2021
Publikationsdatum der Erstveröffentlichung: 2020
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: BIT Numerical Mathematics
Jahrgang/Volume einer Zeitschrift: 60
(Heft-)Nummer: 2
DOI: 10.26083/tuprints-00017586
URL / URN: https://tuprints.ulb.tu-darmstadt.de/17586
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Cellular reactions have a multi-scale nature in the sense that the abundance of molecular species and the magnitude of reaction rates can vary across orders of magnitude. This diversity naturally leads to hybrid models that combine continuous and discrete modeling regimes. In order to capture this multi-scale nature, we proposed jump-diffusion approximations in a previous study. The key idea was to partition reactions into fast and slow groups, and then to combine a Markov jump updating scheme for the slow group with a diffusion (Langevin) updating scheme for the fast group. In this study we show that the joint probability density function of the jump-diffusion approximation over the reaction counting process satisfies a hybrid master equation that combines terms from the chemical master equation and from the Fokker–Planck equation. Inspired by the method of conditional moments, we propose a efficient method to solve this master equation using the moments of reaction counters of the fast reactions given the reaction counters of the slow reactions. For each time point of interest, we then solve a set of maximum entropy problems in order to recover the conditional probability density from its moments. This finally allows us to reconstruct the complete joint probability density over all reaction counters and hence obtain an approximate solution of the hybrid master equation. Finally, we show the accuracy of the method applied to a simple multi-scale conversion process.

Status: Postprint
URN: urn:nbn:de:tuda-tuprints-175866
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 16 Feb 2021 09:30
Letzte Änderung: 23 Sep 2021 14:33
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen