TU Darmstadt / ULB / TUbiblio

Optimum Design and Control of Heat Pumps for Integration into Thermohydraulic Networks

Sporleder, Maximilian ; Burkhardt, Max ; Kohne, Thomas ; Moog, Daniel ; Weigold, Matthias (2020)
Optimum Design and Control of Heat Pumps for Integration into Thermohydraulic Networks.
In: Sustainability, 12 (22)
doi: 10.3390/su12229421
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Germany has become one of the leading players in the transformation of the electricity sector, now having up to 42% of electricity coming from renewable sources. However, the transformation of the heating sector is still in its infancy, and especially the provision of industrial process heating is highly dependent on unsustainable fuels. One of the most promising heating technologies for renewable energies is power-to-heat, especially heat pump technology, as it can use renewable electricity to generate heat efficiently. This research explores the economic and technical boundary conditions regarding the integration of heat pumps into existing industrial thermohydraulic heating and cooling networks. To calculate the optimum design and control of heat pumps, a mixed-integer linear programming model (MILP) is developed. The model seeks the most cost-efficient configuration of heat pumps and stratified thermal storage tanks. Additionally, it optimizes the operation of all energy converters and stratified thermal storage tanks to meet a specified heating and cooling demand over one year. The objective function is modeled after the net present value (NPV) method and considers capital expenditures (costs for heat pumps and stratified thermal storage tanks) and operational expenditures (electricity costs and costs for conventional heating and cooling). The comparison of the results via a simulation model reveals an accuracy of more than 90%.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Sporleder, Maximilian ; Burkhardt, Max ; Kohne, Thomas ; Moog, Daniel ; Weigold, Matthias
Art des Eintrags: Bibliographie
Titel: Optimum Design and Control of Heat Pumps for Integration into Thermohydraulic Networks
Sprache: Englisch
Publikationsjahr: 12 November 2020
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Sustainability
Jahrgang/Volume einer Zeitschrift: 12
(Heft-)Nummer: 22
DOI: 10.3390/su12229421
Kurzbeschreibung (Abstract):

Germany has become one of the leading players in the transformation of the electricity sector, now having up to 42% of electricity coming from renewable sources. However, the transformation of the heating sector is still in its infancy, and especially the provision of industrial process heating is highly dependent on unsustainable fuels. One of the most promising heating technologies for renewable energies is power-to-heat, especially heat pump technology, as it can use renewable electricity to generate heat efficiently. This research explores the economic and technical boundary conditions regarding the integration of heat pumps into existing industrial thermohydraulic heating and cooling networks. To calculate the optimum design and control of heat pumps, a mixed-integer linear programming model (MILP) is developed. The model seeks the most cost-efficient configuration of heat pumps and stratified thermal storage tanks. Additionally, it optimizes the operation of all energy converters and stratified thermal storage tanks to meet a specified heating and cooling demand over one year. The objective function is modeled after the net present value (NPV) method and considers capital expenditures (costs for heat pumps and stratified thermal storage tanks) and operational expenditures (electricity costs and costs for conventional heating and cooling). The comparison of the results via a simulation model reveals an accuracy of more than 90%.

Freie Schlagworte: control, Design, heat pump, MILP, Optimization
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW)
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > ETA Energietechnologien und Anwendungen in der Produktion
Hinterlegungsdatum: 14 Jan 2021 06:24
Letzte Änderung: 14 Jan 2021 06:24
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen