Jasny, Matthias and Ziegler, Tobias and Kraska, Tim and Roehm, Uwe and Binnig, Carsten (2020):
DB4ML - An In-Memory Database Kernel with Machine Learning Support.
In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 159-173,
ACM, SIGMOD/PODS '20: International Conference on Management of Data, virtual Conference, 14.-19.06, ISBN 9781450367356,
DOI: 10.1145/3318464.3380575,
[Conference or Workshop Item]
Abstract
In this paper, we revisit the question of how ML algorithms can be best integrated into existing DBMSs to not only avoid expensive data copies to external ML tools but also to comply with regulatory reasons. The key observation is that database transactions already provide an execution model that allows DBMSs to efficiently mimic the execution model of modern parallel ML algorithms. As a main contribution, this paper presents DB4ML, an in-memory database kernel that allows applications to implement user-defined ML algorithms and efficiently run them inside a DBMS. Thereby, the ML algorithms are implemented using a programming model based on the idea of so called iterative transactions. Our experimental evaluation shows that DB4ML can support user-defined ML algorithms inside a DBMS with the efficiency of modern specialized ML engines. In contrast to DB4ML, these engines not only need to transfer data out of the DBMS but also hardcode the ML algorithms and thus are not extensible.
Item Type: | Conference or Workshop Item |
---|---|
Erschienen: | 2020 |
Creators: | Jasny, Matthias and Ziegler, Tobias and Kraska, Tim and Roehm, Uwe and Binnig, Carsten |
Title: | DB4ML - An In-Memory Database Kernel with Machine Learning Support |
Language: | German |
Abstract: | In this paper, we revisit the question of how ML algorithms can be best integrated into existing DBMSs to not only avoid expensive data copies to external ML tools but also to comply with regulatory reasons. The key observation is that database transactions already provide an execution model that allows DBMSs to efficiently mimic the execution model of modern parallel ML algorithms. As a main contribution, this paper presents DB4ML, an in-memory database kernel that allows applications to implement user-defined ML algorithms and efficiently run them inside a DBMS. Thereby, the ML algorithms are implemented using a programming model based on the idea of so called iterative transactions. Our experimental evaluation shows that DB4ML can support user-defined ML algorithms inside a DBMS with the efficiency of modern specialized ML engines. In contrast to DB4ML, these engines not only need to transfer data out of the DBMS but also hardcode the ML algorithms and thus are not extensible. |
Title of Book: | Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data |
Publisher: | ACM |
ISBN: | 9781450367356 |
Uncontrolled Keywords: | dm, dm_funding_52300543 |
Divisions: | 20 Department of Computer Science 20 Department of Computer Science > Data Management |
Event Title: | SIGMOD/PODS '20: International Conference on Management of Data |
Event Location: | virtual Conference |
Event Dates: | 14.-19.06 |
Date Deposited: | 14 Dec 2020 09:26 |
DOI: | 10.1145/3318464.3380575 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
![]() |
Send an inquiry |
Options (only for editors)
![]() |
Show editorial Details |