TU Darmstadt / ULB / TUbiblio

The PetroPhysical Property Database (P³) – a global compilation of lab-measured rock properties

Bär, K. ; Reinsch, T. ; Bott, J. (2020)
The PetroPhysical Property Database (P³) – a global compilation of lab-measured rock properties.
In: Earth System Science Data, (12)
doi: 10.5194/essd-12-2485-2020
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Petrophysical properties are key to populating local and/or regional numerical models and to interpreting results from geophysical investigation methods. Searching for rock property values measured on samples from a specific rock unit at a specific location might become a very time-consuming challenge given that such data are spread across diverse compilations and that the number of publications on new measurements is continuously growing and data are of heterogeneous quality. Profiting from existing laboratory data to populate numerical models or interpret geophysical surveys at specific locations or for individual reservoir units is often hampered if information on the sample location, petrography, stratigraphy, measuring method and conditions is sparse or not documented. Within the framework of the EC-funded project IMAGE (Integrated Methods for Advanced Geothermal Exploration, EU grant agreement no. 608553), an open-access database of lab-measured petrophysical properties has been developed (Bär et al., 2017, 2019b: P3 – database, https://doi.org/10.5880/GFZ.4.8.2019.P3. The goal of this hierarchical database is to provide easily accessible information on physical rock properties relevant for geothermal exploration and reservoir characterisation in a single compilation. Collected data include classical petrophysical, thermophysical, and mechanical properties as well as electrical conductivity and magnetic susceptibility. Each measured value is complemented by relevant meta-information such as the corresponding sample location, petrographic description, chronostratigraphic age, if available, and original citation. The original stratigraphic and petrographic descriptions are transferred to standardised catalogues following a hierarchical structure ensuring inter-comparability for statistical analysis (Bär and Mielke, 2019: P3 – petrography, https://doi.org/10.5880/GFZ.4.8.2019.P3.p; Bär et al., 2018, 2019a: P3 – stratigraphy, https://doi.org/10.5880/GFZ.4.8.2019.P3.s). In addition, information on the experimental setup (methods) and the measurement conditions are listed for quality control. Thus, rock properties can directly be related to in situ conditions to derive specific parameters relevant for simulating subsurface processes or interpreting geophysical data. We describe the structure, content and status quo of the database and discuss its limitations and advantages for the end user.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Bär, K. ; Reinsch, T. ; Bott, J.
Art des Eintrags: Bibliographie
Titel: The PetroPhysical Property Database (P³) – a global compilation of lab-measured rock properties
Sprache: Englisch
Publikationsjahr: 13 Oktober 2020
Verlag: Copernicus Publication
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Earth System Science Data
(Heft-)Nummer: 12
DOI: 10.5194/essd-12-2485-2020
URL / URN: https://essd.copernicus.org/articles/12/2485/2020/
Kurzbeschreibung (Abstract):

Petrophysical properties are key to populating local and/or regional numerical models and to interpreting results from geophysical investigation methods. Searching for rock property values measured on samples from a specific rock unit at a specific location might become a very time-consuming challenge given that such data are spread across diverse compilations and that the number of publications on new measurements is continuously growing and data are of heterogeneous quality. Profiting from existing laboratory data to populate numerical models or interpret geophysical surveys at specific locations or for individual reservoir units is often hampered if information on the sample location, petrography, stratigraphy, measuring method and conditions is sparse or not documented. Within the framework of the EC-funded project IMAGE (Integrated Methods for Advanced Geothermal Exploration, EU grant agreement no. 608553), an open-access database of lab-measured petrophysical properties has been developed (Bär et al., 2017, 2019b: P3 – database, https://doi.org/10.5880/GFZ.4.8.2019.P3. The goal of this hierarchical database is to provide easily accessible information on physical rock properties relevant for geothermal exploration and reservoir characterisation in a single compilation. Collected data include classical petrophysical, thermophysical, and mechanical properties as well as electrical conductivity and magnetic susceptibility. Each measured value is complemented by relevant meta-information such as the corresponding sample location, petrographic description, chronostratigraphic age, if available, and original citation. The original stratigraphic and petrographic descriptions are transferred to standardised catalogues following a hierarchical structure ensuring inter-comparability for statistical analysis (Bär and Mielke, 2019: P3 – petrography, https://doi.org/10.5880/GFZ.4.8.2019.P3.p; Bär et al., 2018, 2019a: P3 – stratigraphy, https://doi.org/10.5880/GFZ.4.8.2019.P3.s). In addition, information on the experimental setup (methods) and the measurement conditions are listed for quality control. Thus, rock properties can directly be related to in situ conditions to derive specific parameters relevant for simulating subsurface processes or interpreting geophysical data. We describe the structure, content and status quo of the database and discuss its limitations and advantages for the end user.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Angewandte Geothermie
Hinterlegungsdatum: 14 Okt 2020 05:08
Letzte Änderung: 14 Okt 2020 05:08
PPN:
Projekte: IMAGE
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen