TU Darmstadt / ULB / TUbiblio

Hybrid Compliance Compensation for Path Accuracy Enhancement in Robot Machining

Hähn, Felix ; Weigold, Matthias (2020)
Hybrid Compliance Compensation for Path Accuracy Enhancement in Robot Machining.
In: Production Engineering : WGP, 14 (4)
doi: 10.1007/s11740-020-00976-7
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Robot machining processes with high material removal rates lack of high path accuracy mainly due to the low stiffness of industrial robots. The low stiffness leads to process forces caused deviations of the tool center point (TCP) from the planned position of more than 1 mm in industrial applications. To enhance the path accuracy a novel hybrid compliance compensation is developed. It combines a force sensor and model based online compensation with forces of an offline simulation to instantly react to predictable high force changes e.g. at a milling cutter exit from the work piece. The method is applied to a KUKA KR 300 robot. A compliance model based on a forward kinematic with virtual joints is implemented on an external controller. Cartesian or axis specific compensation values are calculated and transferred to the robot via a control circuit. A compliance measurement method is developed and a force torque sensor is mounted to the flange of the robot. The system is validated in with Cartesian and axis specific compensation values as well as with and without pilot control.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Hähn, Felix ; Weigold, Matthias
Art des Eintrags: Bibliographie
Titel: Hybrid Compliance Compensation for Path Accuracy Enhancement in Robot Machining
Sprache: Englisch
Publikationsjahr: August 2020
Verlag: Springer Verlag
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Production Engineering : WGP
Jahrgang/Volume einer Zeitschrift: 14
(Heft-)Nummer: 4
DOI: 10.1007/s11740-020-00976-7
Kurzbeschreibung (Abstract):

Robot machining processes with high material removal rates lack of high path accuracy mainly due to the low stiffness of industrial robots. The low stiffness leads to process forces caused deviations of the tool center point (TCP) from the planned position of more than 1 mm in industrial applications. To enhance the path accuracy a novel hybrid compliance compensation is developed. It combines a force sensor and model based online compensation with forces of an offline simulation to instantly react to predictable high force changes e.g. at a milling cutter exit from the work piece. The method is applied to a KUKA KR 300 robot. A compliance model based on a forward kinematic with virtual joints is implemented on an external controller. Cartesian or axis specific compensation values are calculated and transferred to the robot via a control circuit. A compliance measurement method is developed and a force torque sensor is mounted to the flange of the robot. The system is validated in with Cartesian and axis specific compensation values as well as with and without pilot control.

Freie Schlagworte: Robot-machining, Compliance compensation, Hybrid online/offline compensation, Compliance measurement
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW)
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > Werkzeugmaschinen und Komponenten (2021 aufgegangen in TEC Fertigungstechnologie)
Hinterlegungsdatum: 17 Sep 2020 06:37
Letzte Änderung: 17 Sep 2020 06:37
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen