TU Darmstadt / ULB / TUbiblio

Synthesis and Characterization of 40 wt % Ce0.9Pr0.1O2–δ–60 wt % NdxSr1−xFe0.9Cu0.1O3−δ Dual-Phase Membranes for Efficient Oxygen Separation

Chen, Guoxing ; Zhao, Zhijun ; Widenmeyer, Marc ; Yan, Ruijuan ; Wang, Ling ; Feldhoff, Armin ; Weidenkaff, Anke (2020)
Synthesis and Characterization of 40 wt % Ce0.9Pr0.1O2–δ–60 wt % NdxSr1−xFe0.9Cu0.1O3−δ Dual-Phase Membranes for Efficient Oxygen Separation.
In: Membranes, 10 (8)
doi: 10.3390/membranes10080183
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Dense, H2- and CO2-resistant, oxygen-permeable 40 wt % Ce0.9Pr0.1O2–δ–60 wt % NdxSr1−xFe0.9Cu0.1O3−δdual-phase membranes were prepared in a one-pot process. These Nd-containing dual-phase membranes have up to 60% lower material costs than many classically used dual-phase materials. The Ce0.9Pr0.1O2−δ–Nd0.5Sr0.5Fe0.9Cu0.1O3−δ sample demonstrates outstanding activity and a regenerative ability in the presence of different atmospheres, especially in a reducing atmosphere and pure CO2 atmosphere in comparison with all investigated samples. The oxygen permeation fluxes across a Ce0.9Pr0.1O2−δ–Nd0.5Sr0.5Fe0.9Cu0.1O3−δ membrane reached up to 1.02 mL min−1 cm−2 and 0.63 mL min−1 cm−2 under an air/He and air/CO2 gradient at T = 1223 K, respectively. In addition, a Ce0.9Pr0.1O2–δ–Nd0.5Sr0.5Fe0.9Cu0.1O3–δ membrane (0.65 mm thickness) shows excellent long-term self-healing stability for 125 h. The repeated membrane fabrication delivered oxygen permeation fluxes had a deviation of less than 5%. These results indicate that this highly renewable dual-phase membrane is a potential candidate for long lifetime, high temperature gas separation applications and coupled reaction–separation processes.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Chen, Guoxing ; Zhao, Zhijun ; Widenmeyer, Marc ; Yan, Ruijuan ; Wang, Ling ; Feldhoff, Armin ; Weidenkaff, Anke
Art des Eintrags: Bibliographie
Titel: Synthesis and Characterization of 40 wt % Ce0.9Pr0.1O2–δ–60 wt % NdxSr1−xFe0.9Cu0.1O3−δ Dual-Phase Membranes for Efficient Oxygen Separation
Sprache: Englisch
Publikationsjahr: 12 August 2020
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Membranes
Jahrgang/Volume einer Zeitschrift: 10
(Heft-)Nummer: 8
DOI: 10.3390/membranes10080183
URL / URN: https://www.mdpi.com/2077-0375/10/8/183
Zugehörige Links:
Kurzbeschreibung (Abstract):

Dense, H2- and CO2-resistant, oxygen-permeable 40 wt % Ce0.9Pr0.1O2–δ–60 wt % NdxSr1−xFe0.9Cu0.1O3−δdual-phase membranes were prepared in a one-pot process. These Nd-containing dual-phase membranes have up to 60% lower material costs than many classically used dual-phase materials. The Ce0.9Pr0.1O2−δ–Nd0.5Sr0.5Fe0.9Cu0.1O3−δ sample demonstrates outstanding activity and a regenerative ability in the presence of different atmospheres, especially in a reducing atmosphere and pure CO2 atmosphere in comparison with all investigated samples. The oxygen permeation fluxes across a Ce0.9Pr0.1O2−δ–Nd0.5Sr0.5Fe0.9Cu0.1O3−δ membrane reached up to 1.02 mL min−1 cm−2 and 0.63 mL min−1 cm−2 under an air/He and air/CO2 gradient at T = 1223 K, respectively. In addition, a Ce0.9Pr0.1O2–δ–Nd0.5Sr0.5Fe0.9Cu0.1O3–δ membrane (0.65 mm thickness) shows excellent long-term self-healing stability for 125 h. The repeated membrane fabrication delivered oxygen permeation fluxes had a deviation of less than 5%. These results indicate that this highly renewable dual-phase membrane is a potential candidate for long lifetime, high temperature gas separation applications and coupled reaction–separation processes.

Freie Schlagworte: Oxygen separation, dual-phase membrane, CO2 tolerance, long-term stability, regenerative ability
Zusätzliche Informationen:

This article belongs to the Special Issue Oxygen Transport Membranes: Synthesis and Applications. This work is part of the project “Plasma-induced CO2-conversion” (PiCK, project number: 03SFK2S3B) and financially supported by the German Federal Ministry of Education and Research in the framework of the “Kopernikus projects for the Energiewende”.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Werkstofftechnik und Ressourcenmanagement
Hinterlegungsdatum: 11 Sep 2020 06:36
Letzte Änderung: 29 Nov 2023 10:35
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen