TU Darmstadt / ULB / TUbiblio

Oxygen diffusion barriers for epitaxial thin-film heterostructures with highly conducting SrMoO3 electrodes

Salg, Patrick ; Zeinar, Lukas ; Radetinac, Aldin ; Walk, Dominik ; Maune, Holger ; Jakoby, Rolf ; Alff, Lambert ; Komissinskiy, Philipp (2020)
Oxygen diffusion barriers for epitaxial thin-film heterostructures with highly conducting SrMoO3 electrodes.
In: Journal of Applied Physics, 127 (6)
doi: 10.1063/1.5129767
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Transition metal perovskite oxide SrMoO3 with a Mo4+ 4d2 electronic configuration exhibits a room-temperature resistivity of 5.1 μΩcm in a single-crystal form and, therefore, is considered a prominent conducting electrode material for all-oxide microelectronic devices. Stabilization of the unfavorable Mo4+ valence state in SrMoO3 thin films necessitates reductive growth conditions that are often incompatible with a highly oxidative environment necessary to grow epitaxial heterostructures with fully oxygenated functional layers (e.g., tunable dielectric BaxSr1−xTiO3). Interestingly, only a few unit cells of the perovskite titanate capping layers SrTiO3, BaTiO3, and Ba0.5Sr0.5TiO3 act as an efficient oxygen barrier and minimize SrMoO3 oxidation into electrically insulating SrMoO4 in the broad range of the thin-film growth parameters. The Mo valence state in SrMoO3, determined by x-ray photoelectron spectroscopy, is used to analyze oxygen diffusion through the capping layers. The lowest level of oxygen diffusion is observed in Ba0.5Sr0.5TiO3. A Ba0.5Sr0.5TiO3 film with a thickness of only 6 unit cells preserves the Mo4+ oxidation state in the SrMoO3 underlayer up to the oxygen partial pressure of 8 mTorr at the temperature of 630 ∘C. Results, therefore, indicate that SrMoO3 films covered with atomically thin Ba0.5Sr0.5TiO3 remain conducting in an oxygen environment and can be integrated into all-oxide thin-film heterostructures with other functional materials.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Salg, Patrick ; Zeinar, Lukas ; Radetinac, Aldin ; Walk, Dominik ; Maune, Holger ; Jakoby, Rolf ; Alff, Lambert ; Komissinskiy, Philipp
Art des Eintrags: Bibliographie
Titel: Oxygen diffusion barriers for epitaxial thin-film heterostructures with highly conducting SrMoO3 electrodes
Sprache: Englisch
Publikationsjahr: 14 Februar 2020
Verlag: American Institute of Physics
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Applied Physics
Jahrgang/Volume einer Zeitschrift: 127
(Heft-)Nummer: 6
DOI: 10.1063/1.5129767
URL / URN: https://doi.org/10.1063/1.5129767
Kurzbeschreibung (Abstract):

Transition metal perovskite oxide SrMoO3 with a Mo4+ 4d2 electronic configuration exhibits a room-temperature resistivity of 5.1 μΩcm in a single-crystal form and, therefore, is considered a prominent conducting electrode material for all-oxide microelectronic devices. Stabilization of the unfavorable Mo4+ valence state in SrMoO3 thin films necessitates reductive growth conditions that are often incompatible with a highly oxidative environment necessary to grow epitaxial heterostructures with fully oxygenated functional layers (e.g., tunable dielectric BaxSr1−xTiO3). Interestingly, only a few unit cells of the perovskite titanate capping layers SrTiO3, BaTiO3, and Ba0.5Sr0.5TiO3 act as an efficient oxygen barrier and minimize SrMoO3 oxidation into electrically insulating SrMoO4 in the broad range of the thin-film growth parameters. The Mo valence state in SrMoO3, determined by x-ray photoelectron spectroscopy, is used to analyze oxygen diffusion through the capping layers. The lowest level of oxygen diffusion is observed in Ba0.5Sr0.5TiO3. A Ba0.5Sr0.5TiO3 film with a thickness of only 6 unit cells preserves the Mo4+ oxidation state in the SrMoO3 underlayer up to the oxygen partial pressure of 8 mTorr at the temperature of 630 ∘C. Results, therefore, indicate that SrMoO3 films covered with atomically thin Ba0.5Sr0.5TiO3 remain conducting in an oxygen environment and can be integrated into all-oxide thin-film heterostructures with other functional materials.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Dünne Schichten
18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Mikrowellentechnik und Photonik (IMP)
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Mikrowellentechnik und Photonik (IMP) > THz Bauelemente und THz Systeme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Mikrowellentechnik und Photonik (IMP) > Terahertz Systems
Hinterlegungsdatum: 24 Jul 2020 06:58
Letzte Änderung: 10 Dez 2021 07:12
PPN:
Projekte: This work was funded by the Deutsche Forschungsgemeinschaft (DFG) as part of Project Nos. KO 4093/1-4 and JA 921/31-4, as well as the BMBF VIP+ Project No. 03VP01150 and TU Darmstadt/Entega Pioneer Fund for Innovation.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen