TU Darmstadt / ULB / TUbiblio

Composition Dependence of Ionic Conductivity in LiSiPO(N) Thin-Film Electrolytes for Solid-State Batteries

Famprikis, Theodosios ; Galipaud, Jules ; Clemens, Oliver ; Pecquenard, Brigitte ; Le Cras, Frédéric (2019)
Composition Dependence of Ionic Conductivity in LiSiPO(N) Thin-Film Electrolytes for Solid-State Batteries.
In: ACS Applied Energy Materials, 2 (7)
doi: 10.1021/acsaem.9b00415
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The current commercial standard thin film electrolyte LiPON is the limiting factor for the further development of microbatteries due to its low Li+ ionic conductivity (2 × 10–6 S/cm). In order to produce more conductive electrolytes and elucidate the synthesis–properties interrelation for this system, we sputtered thin films from single-phase ceramic targets of composition Li3+xSixP1–xO4 under Ar and N2 atmospheres. The amorphous thin films produced under Ar (LiSiPO) are more conducting than the crystalline target materials (amorphization effect). Furthermore, the fact that the resulting amorphous films contain both phosphate and silicate building units (mixed-former effect) increases the conductivity to approximately the values of LiPON (10–6 S/cm). Reactive sputtering under N2 leads to oxynitride (LiSiPON) thin films with a maximum Li+ ionic conductivity of 2.06 × 10–5 S/cm (Ea = 0.45 eV), about 1 order of magnitude higher than LiPON, in accordance with previous works. These results are discussed in the context of available literature in order to elucidate the effect of Si:P and Li:(Si + P) compositional ratios on ionic conductivity. Finally, we expose a target-dependent effect of nonstoichiometric, Li-deficient depositions that is a current impediment to sputtering of highly Li+-conductive targets.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Famprikis, Theodosios ; Galipaud, Jules ; Clemens, Oliver ; Pecquenard, Brigitte ; Le Cras, Frédéric
Art des Eintrags: Bibliographie
Titel: Composition Dependence of Ionic Conductivity in LiSiPO(N) Thin-Film Electrolytes for Solid-State Batteries
Sprache: Englisch
Publikationsjahr: 7 Juni 2019
Verlag: ACS Publications
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ACS Applied Energy Materials
Jahrgang/Volume einer Zeitschrift: 2
(Heft-)Nummer: 7
DOI: 10.1021/acsaem.9b00415
URL / URN: https://doi.org/10.1021/acsaem.9b00415
Kurzbeschreibung (Abstract):

The current commercial standard thin film electrolyte LiPON is the limiting factor for the further development of microbatteries due to its low Li+ ionic conductivity (2 × 10–6 S/cm). In order to produce more conductive electrolytes and elucidate the synthesis–properties interrelation for this system, we sputtered thin films from single-phase ceramic targets of composition Li3+xSixP1–xO4 under Ar and N2 atmospheres. The amorphous thin films produced under Ar (LiSiPO) are more conducting than the crystalline target materials (amorphization effect). Furthermore, the fact that the resulting amorphous films contain both phosphate and silicate building units (mixed-former effect) increases the conductivity to approximately the values of LiPON (10–6 S/cm). Reactive sputtering under N2 leads to oxynitride (LiSiPON) thin films with a maximum Li+ ionic conductivity of 2.06 × 10–5 S/cm (Ea = 0.45 eV), about 1 order of magnitude higher than LiPON, in accordance with previous works. These results are discussed in the context of available literature in order to elucidate the effect of Si:P and Li:(Si + P) compositional ratios on ionic conductivity. Finally, we expose a target-dependent effect of nonstoichiometric, Li-deficient depositions that is a current impediment to sputtering of highly Li+-conductive targets.

Freie Schlagworte: LiPON LiSiPON, thin-film electrolyte, microbattery, RF-sputtering, lithium, high conductivity
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialdesign durch Synthese
Hinterlegungsdatum: 04 Jun 2020 05:45
Letzte Änderung: 04 Jun 2020 05:45
PPN:
Projekte: The authors gratefully acknowledge indispensable technical assistance by A. Flura (EIS), L. Etienne (ICP-OES), F. Geffraye (SEM), F. Weil (TEM), M. Lahaye (EPMA), and E. Lebraud (XRD).
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen