TU Darmstadt / ULB / TUbiblio

Fault-Tolerant Physical Human-Robot Interaction via Stiffness Adaptation of Elastic Actuators

Stuhlenmiller, Florian ; Velasco-Guillen, Rodrigo J. ; Rinderknecht, Stephan ; Beckerle, Philipp
Hrsg.: Ferraguti, F. ; Villani, V. ; Sabattini, L. ; Bonfè, M. (2020)
Fault-Tolerant Physical Human-Robot Interaction via Stiffness Adaptation of Elastic Actuators.
doi: 10.1007/978-3-030-42026-0_6
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Elastic actuators are popular in human-robot interaction as they can improve human safety and efficiency. Yet, such actuators are more complex than rigid ones and might be subject to additional technical faults, e.g., stiffness changes. This paper extends previous studies on stiffness-fault-tolerant physical human-robot interaction (pHRI) through control adaptation, introducing new methods for stiffness estimation and fault evaluation. Kalman filters with different measurement signals and system models estimating the actual stiffness value of the elastic element are compared. Faults are evaluated by analyzing the structural durability and compensated by adapting an impedance controller to provide a desired interaction stiffness. Experiments with a series elastic actuator underline the feasibility of the evaluation and compensation methods for attaining safe and reliable pHRI. Results show that stiffness estimation during pHRI is possible when the actuator friction and interaction torque is either negligible or well known, or when the torque at the spring is measured.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2020
Herausgeber: Ferraguti, F. ; Villani, V. ; Sabattini, L. ; Bonfè, M.
Autor(en): Stuhlenmiller, Florian ; Velasco-Guillen, Rodrigo J. ; Rinderknecht, Stephan ; Beckerle, Philipp
Art des Eintrags: Bibliographie
Titel: Fault-Tolerant Physical Human-Robot Interaction via Stiffness Adaptation of Elastic Actuators
Sprache: Englisch
Publikationsjahr: 3 Juni 2020
Ort: Cham
Verlag: Springer
Buchtitel: Human-Friendly Robotics 2019
Reihe: Springer Proceedings in Advanced Robotics
Band einer Reihe: 12
DOI: 10.1007/978-3-030-42026-0_6
URL / URN: https://link.springer.com/chapter/10.1007/978-3-030-42026-0_...
Kurzbeschreibung (Abstract):

Elastic actuators are popular in human-robot interaction as they can improve human safety and efficiency. Yet, such actuators are more complex than rigid ones and might be subject to additional technical faults, e.g., stiffness changes. This paper extends previous studies on stiffness-fault-tolerant physical human-robot interaction (pHRI) through control adaptation, introducing new methods for stiffness estimation and fault evaluation. Kalman filters with different measurement signals and system models estimating the actual stiffness value of the elastic element are compared. Faults are evaluated by analyzing the structural durability and compensated by adapting an impedance controller to provide a desired interaction stiffness. Experiments with a series elastic actuator underline the feasibility of the evaluation and compensation methods for attaining safe and reliable pHRI. Results show that stiffness estimation during pHRI is possible when the actuator friction and interaction torque is either negligible or well known, or when the torque at the spring is measured.

Freie Schlagworte: Physical human-robot interaction, Elastic actuator, Fault evaluation, Fault-tolerant control
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Mechatronische Systeme im Maschinenbau (IMS)
Hinterlegungsdatum: 29 Jun 2020 05:37
Letzte Änderung: 29 Jun 2020 05:37
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen