TU Darmstadt / ULB / TUbiblio

Segregation and properties at curved vs straight (0001) inversion boundaries in piezotronic ZnO bicrystals

Trapp, Maximilian ; Keil, Peter ; Frömling, Till ; Rödel, Jürgen ; Kleebe, Hans-Joachim (2020)
Segregation and properties at curved vs straight (0001) inversion boundaries in piezotronic ZnO bicrystals.
In: Journal of the American Ceramic Society, 103 (4)
doi: 10.1111/jace.16912
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

TEM and SEM investigations of ZnO bicrystal interfaces were undertaken with an aim to study the correlation of local grain-boundary structure, segregation, and electrical transport perpendicular to the interface. To this end, varistor-like ZnO bicrystals with piezotronic characteristics were chosen with (0001)║(0001) tail-to-tail orientation with respect to the c-axis. In order to contrast different local grain-boundary structures with different coherency and segregation of bismuth, but identical macroscopic polarization state, two complementary processing techniques were applied. A diffusion-bonded bicrystal with an intermediate thin film containing Zn–Bi–Co–O provided a straight interface as reference. In contrast, a ZnO bicrystal prepared by epitaxial solid-state transformation was manufactured by bonding two ZnO single crystals with a 100 μm thick polycrystalline ZnO varistor material with a typical dopant composition including bismuth and cobalt. This structure was annealed to the point that a bicrystal was formed with the varistor concentration at the boundary,which was strongly curved due to the polycrystalline microstructure still providing a shadow image at the interface. The results highlight a distinct correlation between local interfacial morphology, degree of segregation of bismuth, and degree of nonlinearity of the electrical transport across the interface.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Trapp, Maximilian ; Keil, Peter ; Frömling, Till ; Rödel, Jürgen ; Kleebe, Hans-Joachim
Art des Eintrags: Bibliographie
Titel: Segregation and properties at curved vs straight (0001) inversion boundaries in piezotronic ZnO bicrystals
Sprache: Englisch
Publikationsjahr: April 2020
Verlag: Wiley
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of the American Ceramic Society
Jahrgang/Volume einer Zeitschrift: 103
(Heft-)Nummer: 4
DOI: 10.1111/jace.16912
Kurzbeschreibung (Abstract):

TEM and SEM investigations of ZnO bicrystal interfaces were undertaken with an aim to study the correlation of local grain-boundary structure, segregation, and electrical transport perpendicular to the interface. To this end, varistor-like ZnO bicrystals with piezotronic characteristics were chosen with (0001)║(0001) tail-to-tail orientation with respect to the c-axis. In order to contrast different local grain-boundary structures with different coherency and segregation of bismuth, but identical macroscopic polarization state, two complementary processing techniques were applied. A diffusion-bonded bicrystal with an intermediate thin film containing Zn–Bi–Co–O provided a straight interface as reference. In contrast, a ZnO bicrystal prepared by epitaxial solid-state transformation was manufactured by bonding two ZnO single crystals with a 100 μm thick polycrystalline ZnO varistor material with a typical dopant composition including bismuth and cobalt. This structure was annealed to the point that a bicrystal was formed with the varistor concentration at the boundary,which was strongly curved due to the polycrystalline microstructure still providing a shadow image at the interface. The results highlight a distinct correlation between local interfacial morphology, degree of segregation of bismuth, and degree of nonlinearity of the electrical transport across the interface.

Freie Schlagworte: Bicrystal, interfaces, segregation, transmission electron microscopy, varistors, zinc oxide
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
Hinterlegungsdatum: 06 Feb 2020 06:59
Letzte Änderung: 26 Sep 2022 07:42
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen