TU Darmstadt / ULB / TUbiblio

Composition and mixing state of atmospheric aerosols determined by electron microscopy: method development and application to aged Saharan dust deposition in the Caribbean boundary layer

Kandler, Konrad ; Schneiders, Kilian ; Ebert, Martin ; Hartmann, Markus ; Weinbruch, Stephan ; Prass, Maria ; Pöhlker, Christopher (2019)
Composition and mixing state of atmospheric aerosols determined by electron microscopy: method development and application to aged Saharan dust deposition in the Caribbean boundary layer.
In: Atmospheric Chemistry and Physics, 2018, 18 (18)
doi: 10.25534/tuprints-00011382
Artikel, Zweitveröffentlichung

Kurzbeschreibung (Abstract)

The microphysical properties, composition and mixing state of mineral dust, sea salt and secondary compounds were measured by active and passive aerosol sampling, followed by electron microscopy and X-ray fluorescence in the Caribbean marine boundary layer. Measurements were carried out at Ragged Point, Barbados during June–July 2013 and August 2016. Techniques are presented and evaluated, which allow for statements on atmospheric aerosol concentrations and aerosol mixing state based on collected samples. It became obvious that in the diameter range with the highest dust deposition the deposition velocity models disagree by more than 2 orders of magnitude. Aerosol at Ragged Point was dominated by dust, sea salt and soluble sulfates in varying proportions. The contribution of sea salt was dependent on local wind speed. Sulfate concentrations were linked to long-range transport from Africa and Europe, and South America and the southern Atlantic Ocean. Dust sources were located in western Africa. The dust silicate composition was not significantly varied. Pure feldspar grains were 3 % of the silicate particles, of which about a third were K-feldspar. The average dust deposition observed was 10 mg m−2 d−1 (range of 0.5–47 mg m−2 d−1), of which 0.67 mg m−2 d−1 was iron and 0.001 mg m−2 d−1 phosphorus. Iron deposition was mainly driven by silicate particles from Africa. Dust particles were mixed internally to a minor fraction (10 %), mostly with sea salt and less frequently with sulfate. It was estimated that the average dust deposition velocity under ambient conditions is increased by the internal mixture by 30 % – 140 % for particles between 1 and 10 µm dust aerodynamic diameter, with approximately 35 % at the mass median diameter of deposition (7.0 µm). For this size, an effective deposition velocity of 6.4 mm s−1 (geometric standard deviation of 3.1 over all individual particles) was observed.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Kandler, Konrad ; Schneiders, Kilian ; Ebert, Martin ; Hartmann, Markus ; Weinbruch, Stephan ; Prass, Maria ; Pöhlker, Christopher
Art des Eintrags: Zweitveröffentlichung
Titel: Composition and mixing state of atmospheric aerosols determined by electron microscopy: method development and application to aged Saharan dust deposition in the Caribbean boundary layer
Sprache: Englisch
Publikationsjahr: 2019
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2018
Verlag: Copernicus
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Atmospheric Chemistry and Physics
Jahrgang/Volume einer Zeitschrift: 18
(Heft-)Nummer: 18
DOI: 10.25534/tuprints-00011382
URL / URN: https://doi.org/10.5194/acp-18-13429-2018
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

The microphysical properties, composition and mixing state of mineral dust, sea salt and secondary compounds were measured by active and passive aerosol sampling, followed by electron microscopy and X-ray fluorescence in the Caribbean marine boundary layer. Measurements were carried out at Ragged Point, Barbados during June–July 2013 and August 2016. Techniques are presented and evaluated, which allow for statements on atmospheric aerosol concentrations and aerosol mixing state based on collected samples. It became obvious that in the diameter range with the highest dust deposition the deposition velocity models disagree by more than 2 orders of magnitude. Aerosol at Ragged Point was dominated by dust, sea salt and soluble sulfates in varying proportions. The contribution of sea salt was dependent on local wind speed. Sulfate concentrations were linked to long-range transport from Africa and Europe, and South America and the southern Atlantic Ocean. Dust sources were located in western Africa. The dust silicate composition was not significantly varied. Pure feldspar grains were 3 % of the silicate particles, of which about a third were K-feldspar. The average dust deposition observed was 10 mg m−2 d−1 (range of 0.5–47 mg m−2 d−1), of which 0.67 mg m−2 d−1 was iron and 0.001 mg m−2 d−1 phosphorus. Iron deposition was mainly driven by silicate particles from Africa. Dust particles were mixed internally to a minor fraction (10 %), mostly with sea salt and less frequently with sulfate. It was estimated that the average dust deposition velocity under ambient conditions is increased by the internal mixture by 30 % – 140 % for particles between 1 and 10 µm dust aerodynamic diameter, with approximately 35 % at the mass median diameter of deposition (7.0 µm). For this size, an effective deposition velocity of 6.4 mm s−1 (geometric standard deviation of 3.1 over all individual particles) was observed.

URN: urn:nbn:de:tuda-tuprints-113829
Zusätzliche Informationen:

Notice on corrigendum The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
Hinterlegungsdatum: 26 Jan 2020 20:57
Letzte Änderung: 20 Okt 2023 08:49
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen