TU Darmstadt / ULB / TUbiblio

Breakup dynamics of capillary bridges on hydrophobic stripes

Hartmann, Maximilian ; Fricke, Mathis ; Weimar, Lukas ; Gründing, Dirk ; Marić, Tomislav ; Bothe, Dieter ; Hardt, Steffen (2019)
Breakup dynamics of capillary bridges on hydrophobic stripes.
In: Fluid Dynamics, (Preprint)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The breakup dynamics of a capillary bridge on a hydrophobic stripe between two hydrophilic stripes is studied experimentally and numerically. The capillary bridge is formed from an evaporating water droplet wetting three neighboring stripes of a chemically patterned surface. The simulations are based on the Volume-of-Fluid (VOF) method implemented in Free Surface 3D (FS3D). In order to construct physically realistic initial data for the VOF simulation, Surface Evolver is employed to calculate an initial configuration consistent with experiments. Numerical instabilities at the contact line are reduced by a novel adaptation of the Navier-slip boundary condition. By considering the breakup process in phase space, the breakup dynamics can be evaluated without the uncertainty in determining the precise breakup time. It is found that within an intermediate inviscid regime, the breakup dynamics follows a $t\^2/3$-scaling, indicating that the breakup process is dominated by the balance of inertial and capillary forces. For smaller bridge widths, the breakup velocity reaches a plateau, which is due to viscous forces becoming more important. In the final stage of breakup, the capillary bridge forms a liquid thread that breaks up consistent with the Rayleigh-Plateau instability. The critical wavelength is identical to the distance between the tips of two liquid cones between which the thread is arranged. The existence of satellite droplets in a regular pattern indicates that the primary breakup process is followed by self-similar secondary breakups.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Hartmann, Maximilian ; Fricke, Mathis ; Weimar, Lukas ; Gründing, Dirk ; Marić, Tomislav ; Bothe, Dieter ; Hardt, Steffen
Art des Eintrags: Bibliographie
Titel: Breakup dynamics of capillary bridges on hydrophobic stripes
Sprache: Englisch
Publikationsjahr: 11 Dezember 2019
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Fluid Dynamics
(Heft-)Nummer: Preprint
Reihe: arXiv-Physics
Auflage: Version 1
URL / URN: http://arxiv.org/pdf/1910.01887v1
Zugehörige Links:
Kurzbeschreibung (Abstract):

The breakup dynamics of a capillary bridge on a hydrophobic stripe between two hydrophilic stripes is studied experimentally and numerically. The capillary bridge is formed from an evaporating water droplet wetting three neighboring stripes of a chemically patterned surface. The simulations are based on the Volume-of-Fluid (VOF) method implemented in Free Surface 3D (FS3D). In order to construct physically realistic initial data for the VOF simulation, Surface Evolver is employed to calculate an initial configuration consistent with experiments. Numerical instabilities at the contact line are reduced by a novel adaptation of the Navier-slip boundary condition. By considering the breakup process in phase space, the breakup dynamics can be evaluated without the uncertainty in determining the precise breakup time. It is found that within an intermediate inviscid regime, the breakup dynamics follows a $t\^2/3$-scaling, indicating that the breakup process is dominated by the balance of inertial and capillary forces. For smaller bridge widths, the breakup velocity reaches a plateau, which is due to viscous forces becoming more important. In the final stage of breakup, the capillary bridge forms a liquid thread that breaks up consistent with the Rayleigh-Plateau instability. The critical wavelength is identical to the distance between the tips of two liquid cones between which the thread is arranged. The existence of satellite droplets in a regular pattern indicates that the primary breakup process is followed by self-similar secondary breakups.

Freie Schlagworte: DFG|SFB1194|TP Z-INF Bothe
Zusätzliche Informationen:

Version 1

Fachbereich(e)/-gebiet(e): DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich A: Generische Experimente
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich A: Generische Experimente > A02: Experimentelle Untersuchungen zur Koaleszenz und zum Aufriss von Tropfen auf festen Oberflächen - Leitkonfiguration Tropfen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation > B01: Modellierung und VOF-basierte Simulation der Multiphysik irreversibler thermodynamischer Transferprozesse an dynamischen Kontaktlinien
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation > B02: Direkte Numerische Simulation lokal gekoppelter Grenzflächentransportprozesse an Kontaktlinien bei dynamischen Benetzungsprozessen
Profilbereiche
Profilbereiche > Thermo-Fluids & Interfaces
TU-Projekte: DFG|SFB1194|TP Z-INF Bothe
Hinterlegungsdatum: 11 Dez 2019 12:31
Letzte Änderung: 05 Jun 2023 12:57
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen