Fricke, Mathis and Marić, Tomislav and Bothe, Dieter (2019):
Contact line advection using the geometrical Volume-of-Fluid method.
[Report]
Abstract
We consider the geometrical problem of the passive transport of a hypersurface by a prescribed velocity field in the special case where the hypersurface intersects the domain boundary. This problem emerges from the discretization of continuum models for dynamic wetting. The kinematic evolution equation for the dynamic contact angle (Fricke et al., 2019) expresses the fundamental relationship between the rate of change of the contact angle and the structure of the transporting velocity field. In the present study, it serves as a reference to verify the numerical transport of the contact angle. We employ the geometrical Volume-of-Fluid (VOF) method on a structured Cartesian grid to solve the hyperbolic transport equation for the interface in two spatial dimensions. We introduce generalizations of the Youngs and ELVIRA methods to reconstruct the interface close to the domain boundary. Both methods deliver first-order convergent results for the motion of the contact line. However, the Boundary Youngs method shows strong oscillations in the numerical contact angle that do not converge with mesh refinement. In contrast to that, the Boundary ELVIRA method provides linear convergence of the numerical contact angle transport.
Item Type: | Report |
---|---|
Erschienen: | 2019 |
Creators: | Fricke, Mathis and Marić, Tomislav and Bothe, Dieter |
Title: | Contact line advection using the geometrical Volume-of-Fluid method |
Language: | German |
Abstract: | We consider the geometrical problem of the passive transport of a hypersurface by a prescribed velocity field in the special case where the hypersurface intersects the domain boundary. This problem emerges from the discretization of continuum models for dynamic wetting. The kinematic evolution equation for the dynamic contact angle (Fricke et al., 2019) expresses the fundamental relationship between the rate of change of the contact angle and the structure of the transporting velocity field. In the present study, it serves as a reference to verify the numerical transport of the contact angle. We employ the geometrical Volume-of-Fluid (VOF) method on a structured Cartesian grid to solve the hyperbolic transport equation for the interface in two spatial dimensions. We introduce generalizations of the Youngs and ELVIRA methods to reconstruct the interface close to the domain boundary. Both methods deliver first-order convergent results for the motion of the contact line. However, the Boundary Youngs method shows strong oscillations in the numerical contact angle that do not converge with mesh refinement. In contrast to that, the Boundary ELVIRA method provides linear convergence of the numerical contact angle transport. |
Divisions: | DFG-Collaborative Research Centres (incl. Transregio) DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1194: Interaction between Transport and Wetting Processes DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1194: Interaction between Transport and Wetting Processes > Research Area B: Modeling and Simulation DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1194: Interaction between Transport and Wetting Processes > Research Area B: Modeling and Simulation > B01: Modelling and VOF based Simulation of the Multiphysics of Irreversible Thermodynamic Transfer Processes at Dynamic Contact Lines Profile Areas Profile Areas > Thermo-Fluids & Interfaces |
Date Deposited: | 11 Dec 2019 12:30 |
Official URL: | http://arxiv.org/pdf/1907.01785 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
![]() |
Send an inquiry |
Options (only for editors)
![]() |
Show editorial Details |