TU Darmstadt / ULB / TUbiblio

Elastostatic loading of metallic glass-crystal nanocomposites: Relationship of creep rate and interface energy

Kalcher, Constanze and Brink, Tobias and Rohrer, Jochen and Stukowski, Alexander and Albe, Karsten (2019):
Elastostatic loading of metallic glass-crystal nanocomposites: Relationship of creep rate and interface energy.
In: Physical Review Materials, American Physical Society, pp. 1-9, 3, (93605), ISSN 2475-9953,
DOI: 10.1103/PhysRevMaterials.3.093605,
[Online-Edition: https://doi.org/10.1103/PhysRevMaterials.3.093605],
[Article]

Abstract

We study the creep behavior of Cu_64Zr_36 glass-crystal nanocomposites under elastostatic loading conditions in molecular dynamics simulations. By manipulating the glass-crystal interfaces of a precipitation-annealed glass containing Laves-type crystallites, we show that the creep behavior can be tuned. Specifically, we find that for the same microstructure the creep rate scales exponentially with the excess energy in the interfaces, which we raise artificially by disturbing the local short-range order in the atomistic model. The behavior shows analogies to Coble creep in crystalline metals, which depends on grain boundary diffusivity and implicitly on grain boundary energies.

Item Type: Article
Erschienen: 2019
Creators: Kalcher, Constanze and Brink, Tobias and Rohrer, Jochen and Stukowski, Alexander and Albe, Karsten
Title: Elastostatic loading of metallic glass-crystal nanocomposites: Relationship of creep rate and interface energy
Language: English
Abstract:

We study the creep behavior of Cu_64Zr_36 glass-crystal nanocomposites under elastostatic loading conditions in molecular dynamics simulations. By manipulating the glass-crystal interfaces of a precipitation-annealed glass containing Laves-type crystallites, we show that the creep behavior can be tuned. Specifically, we find that for the same microstructure the creep rate scales exponentially with the excess energy in the interfaces, which we raise artificially by disturbing the local short-range order in the atomistic model. The behavior shows analogies to Coble creep in crystalline metals, which depends on grain boundary diffusivity and implicitly on grain boundary energies.

Journal or Publication Title: Physical Review Materials
Volume: 3
Number: 93605
Publisher: American Physical Society
Divisions: 11 Department of Materials and Earth Sciences
11 Department of Materials and Earth Sciences > Material Science
11 Department of Materials and Earth Sciences > Material Science > Materials Modelling
Zentrale Einrichtungen
Zentrale Einrichtungen > University IT-Service and Computing Centre (HRZ)
Zentrale Einrichtungen > University IT-Service and Computing Centre (HRZ) > Hochleistungsrechner
Date Deposited: 23 Oct 2019 06:52
DOI: 10.1103/PhysRevMaterials.3.093605
Official URL: https://doi.org/10.1103/PhysRevMaterials.3.093605
Export:
Suche nach Titel in: TUfind oder in Google

Optionen (nur für Redakteure)

View Item View Item