TU Darmstadt / ULB / TUbiblio

Influence of Different Fault Ride-Through Strategies of Converter-Interfaced Distributed Generation on Short-Term Voltage Stability

Coumont, Martin ; Bennewitz, Florian ; Hanson, Jutta (2019)
Influence of Different Fault Ride-Through Strategies of Converter-Interfaced Distributed Generation on Short-Term Voltage Stability.
2019 IEEE PES Innovative Smart Grid Technologies Europe. Bukarest, Romania (29.09.-02.10.2019)
doi: 10.1109/ISGTEurope.2019.8905465
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Fault ride-through strategies of converter-interfaced distributed generation units are an important factor, that is to be considered, when evaluating system stability in future power systems with high share of distributed power generation. Two major groups of control strategies exist: control systems based on current injection as required by several European grid codes and voltage controlled inverter strategies. This paper investigates the influence of the fault ride-through strategy on short-term voltage stability following voltage sags in the distribution grid caused by a three phase short circuit in the overlaying transmission network. A control strategy with blocking current mode resulting in zero current output during fault ride-through is taken as reference. Voltage support by means of current injection is considered with two variations: reactive current injection and current injection in both axes based on the grid impedance angle. A hierarchical d/q-voltage control strategy is used as an example for voltage controlled inverter behavior. Comparative analysis using time domain simulations in a one load infinite bus system is performed and fundamental differences between the control strategies are described. Voltage stability is evaluated regarding the maximum possible fault duration, until induction motor stalling and subsequent local voltage collapse occurs. The comparison of the control strategies shows that d/q-voltage control is able to improve short-term voltage stability and is less dependent on the grid impedance and load composition than control based on current injection.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Autor(en): Coumont, Martin ; Bennewitz, Florian ; Hanson, Jutta
Art des Eintrags: Bibliographie
Titel: Influence of Different Fault Ride-Through Strategies of Converter-Interfaced Distributed Generation on Short-Term Voltage Stability
Sprache: Englisch
Publikationsjahr: 21 November 2019
Verlag: IEEE
Buchtitel: 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)
Veranstaltungstitel: 2019 IEEE PES Innovative Smart Grid Technologies Europe
Veranstaltungsort: Bukarest, Romania
Veranstaltungsdatum: 29.09.-02.10.2019
DOI: 10.1109/ISGTEurope.2019.8905465
URL / URN: https://site.ieee.org/isgt-europe-2019/
Kurzbeschreibung (Abstract):

Fault ride-through strategies of converter-interfaced distributed generation units are an important factor, that is to be considered, when evaluating system stability in future power systems with high share of distributed power generation. Two major groups of control strategies exist: control systems based on current injection as required by several European grid codes and voltage controlled inverter strategies. This paper investigates the influence of the fault ride-through strategy on short-term voltage stability following voltage sags in the distribution grid caused by a three phase short circuit in the overlaying transmission network. A control strategy with blocking current mode resulting in zero current output during fault ride-through is taken as reference. Voltage support by means of current injection is considered with two variations: reactive current injection and current injection in both axes based on the grid impedance angle. A hierarchical d/q-voltage control strategy is used as an example for voltage controlled inverter behavior. Comparative analysis using time domain simulations in a one load infinite bus system is performed and fundamental differences between the control strategies are described. Voltage stability is evaluated regarding the maximum possible fault duration, until induction motor stalling and subsequent local voltage collapse occurs. The comparison of the control strategies shows that d/q-voltage control is able to improve short-term voltage stability and is less dependent on the grid impedance and load composition than control based on current injection.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Elektrische Energiesysteme > Elektrische Energieversorgung unter Einsatz Erneuerbarer Energien
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Elektrische Energiesysteme
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 14 Okt 2019 06:22
Letzte Änderung: 16 Aug 2023 11:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen