TU Darmstadt / ULB / TUbiblio

3D non-isothermal phase-field simulation of microstructure evolution during selective laser sintering

Yang, Yangyiwei ; Ragnvaldsen, Olav ; Bai, Yang ; Yi, Min ; Xu, Bai-Xiang (2019)
3D non-isothermal phase-field simulation of microstructure evolution during selective laser sintering.
In: npj Computational Materials, 2019, 5 (1)
doi: 10.1038/s41524-019-0219-7
Artikel, Zweitveröffentlichung

Kurzbeschreibung (Abstract)

During selective laser sintering (SLS), the microstructure evolution and local temperature variation interact mutually. Application of conventional isothermal sintering model is thereby insufficient to describe SLS. In this work, we construct our model from entropy level, and derive the non-isothermal kinetics for order parameters along with the heat transfer equation coupled with microstructure evolution. Influences from partial melting and laser-powder interaction are also addressed. We then perform 3D finite element non-isothermal phase-field simulations of the SLS single scan. To confront the high computation cost, we propose a novel algorithm analogy to minimum coloring problem and manage to simulate a system of 200 grains with grain tracking algorithm using as low as 8 non-conserved order parameters. Specifically, applying the model to SLS of the stainless steel 316L powder, we identify the influences of laser power and scan speed on microstructural features, including the porosity, surface morphology, temperature profile, grain geometry, and densification. We further validate the first-order kinetics of the transient porosity during densification, and demonstrate the applicability of the developed model in predicting the linkage of densification factor to the specific energy input during SLS.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Yang, Yangyiwei ; Ragnvaldsen, Olav ; Bai, Yang ; Yi, Min ; Xu, Bai-Xiang
Art des Eintrags: Zweitveröffentlichung
Titel: 3D non-isothermal phase-field simulation of microstructure evolution during selective laser sintering
Sprache: Englisch
Publikationsjahr: 2019
Publikationsdatum der Erstveröffentlichung: 2019
Verlag: Springer Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: npj Computational Materials
Jahrgang/Volume einer Zeitschrift: 5
(Heft-)Nummer: 1
DOI: 10.1038/s41524-019-0219-7
URL / URN: https://doi.org/10.1038/s41524-019-0219-7
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

During selective laser sintering (SLS), the microstructure evolution and local temperature variation interact mutually. Application of conventional isothermal sintering model is thereby insufficient to describe SLS. In this work, we construct our model from entropy level, and derive the non-isothermal kinetics for order parameters along with the heat transfer equation coupled with microstructure evolution. Influences from partial melting and laser-powder interaction are also addressed. We then perform 3D finite element non-isothermal phase-field simulations of the SLS single scan. To confront the high computation cost, we propose a novel algorithm analogy to minimum coloring problem and manage to simulate a system of 200 grains with grain tracking algorithm using as low as 8 non-conserved order parameters. Specifically, applying the model to SLS of the stainless steel 316L powder, we identify the influences of laser power and scan speed on microstructural features, including the porosity, surface morphology, temperature profile, grain geometry, and densification. We further validate the first-order kinetics of the transient porosity during densification, and demonstrate the applicability of the developed model in predicting the linkage of densification factor to the specific energy input during SLS.

URN: urn:nbn:de:tuda-tuprints-90873
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 15 Sep 2019 19:55
Letzte Änderung: 26 Jan 2024 09:21
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen