TU Darmstadt / ULB / TUbiblio

Learning Wi-Fi Connection Loss Predictions for Seamless Vertical Handovers Using Multipath TCP

Höchst, Jonas and Sterz, Artur and Frömmgen, Alexander and Stohr, Denny and Steinmetz, Ralf and Freisleben, Bernd (2019):
Learning Wi-Fi Connection Loss Predictions for Seamless Vertical Handovers Using Multipath TCP.
In: The 44th IEEE Conference on Local Computer Networks (LCN 2019), Osnabrück, Germany, Oct 14-17, 2019, [Conference or Workshop Item]

Abstract

We present a novel data-driven approach to perform smooth Wi-Fi/cellular handovers on smartphones. Our approach relies on data provided by multiple smartphone sensors (e.g., Wi-Fi RSSI, acceleration, compass, step counter, air pressure) to predict Wi-Fi connection loss and uses Multipath TCP to dynamically switch between different connectivity modes. We train a random forest classifier and an artificial neural network on real-world sensor data collected by five smartphone users over a period of three months. The trained models are executed on smartphones to reliably predict Wi-Fi connection loss 15 seconds ahead of time, with a precision of up to 0.97 and a recall of up to 0.98. Furthermore, we present results for four DASH video streaming experiments that run on a Nexus 5 smartphone using available Wi-Fi/cellular networks. The neural network predictions for Wi-Fi connection loss are used to establish MPTCP subflows on the cellular link. The experiments show that our approach provides seamless wireless connectivity, improves quality of experience of DASH video streaming, and requires less cellular data compared to handover approaches without Wi-Fi connection loss predictions.

Item Type: Conference or Workshop Item
Erschienen: 2019
Creators: Höchst, Jonas and Sterz, Artur and Frömmgen, Alexander and Stohr, Denny and Steinmetz, Ralf and Freisleben, Bernd
Title: Learning Wi-Fi Connection Loss Predictions for Seamless Vertical Handovers Using Multipath TCP
Language: English
Abstract:

We present a novel data-driven approach to perform smooth Wi-Fi/cellular handovers on smartphones. Our approach relies on data provided by multiple smartphone sensors (e.g., Wi-Fi RSSI, acceleration, compass, step counter, air pressure) to predict Wi-Fi connection loss and uses Multipath TCP to dynamically switch between different connectivity modes. We train a random forest classifier and an artificial neural network on real-world sensor data collected by five smartphone users over a period of three months. The trained models are executed on smartphones to reliably predict Wi-Fi connection loss 15 seconds ahead of time, with a precision of up to 0.97 and a recall of up to 0.98. Furthermore, we present results for four DASH video streaming experiments that run on a Nexus 5 smartphone using available Wi-Fi/cellular networks. The neural network predictions for Wi-Fi connection loss are used to establish MPTCP subflows on the cellular link. The experiments show that our approach provides seamless wireless connectivity, improves quality of experience of DASH video streaming, and requires less cellular data compared to handover approaches without Wi-Fi connection loss predictions.

Divisions: 18 Department of Electrical Engineering and Information Technology
18 Department of Electrical Engineering and Information Technology > Institute of Computer Engineering
18 Department of Electrical Engineering and Information Technology > Institute of Computer Engineering > Multimedia Communications
DFG-Collaborative Research Centres (incl. Transregio)
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > A: Construction Methodology
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > A: Construction Methodology > Subproject A3: Migration
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > B: Adaptation Mechanisms
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > B: Adaptation Mechanisms > Subproject B3: Economics of Adaption
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > C: Communication Mechanisms
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > C: Communication Mechanisms > Subproject C2: Information-centred perspective
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > C: Communication Mechanisms > Subproject C3: Content-centred perspective
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > C: Communication Mechanisms > Subproject C5: Context-Centered Perspective
Event Title: The 44th IEEE Conference on Local Computer Networks (LCN 2019)
Event Location: Osnabrück, Germany
Event Dates: Oct 14-17, 2019
Date Deposited: 29 Aug 2019 13:35
Related URLs:
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details