TU Darmstadt / ULB / TUbiblio

On processing-structure-property relations and high ionic conductivity in garnet-type Li 5 La 3 Ta 2 O 12 solid electrolyte thin films grown by CO 2 -laser assisted CVD

Loho, Christoph ; Djenadic, Ruzica ; Mundt, Paul ; Clemens, Oliver ; Hahn, Horst (2017)
On processing-structure-property relations and high ionic conductivity in garnet-type Li 5 La 3 Ta 2 O 12 solid electrolyte thin films grown by CO 2 -laser assisted CVD.
In: Solid State Ionics, 313
doi: 10.1016/j.ssi.2017.11.005
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

This study reports on the optimization of garnet-type Li-ion conducting Li5La3Ta2O12 (LLTaO) solid electrolyte thin film growth by CO2-laser assisted chemical vapor deposition (LA-CVD) and the films' detailed structural as well as electrochemical characterization. By adapting the LA-CVD process parameters, high quality LLTaO films with tailored microstructures are successfully grown, which allows to correlate the films' microstructure and phase composition with their electrochemical performance. Explicitly, the influence of grain boundaries on the ionic conductivity is studied, and possible strategies to lower the grain boundary resistance are given. As deposited LLTaO films show a total ionic conductivity of 7.8·10− 6 S·cm− 1 at 298 K (activation energy of 0.66 eV). By applying a post-annealing treatment the total ionic conductivity is improved up to 3.8·10− 5 S·cm− 1 at 298 K (activation energy of 0.52 eV). This is among the highest ionic conductivities reported for Li-ion conducting garnet-type thin films so far. A better suitability of garnet-type Li5La3Ta2O12 films for fundamental research as well as for application in all-solid-state thin film lithium ion batteries compared to commonly investigated Li7La3Zr2O12 films is proposed and discussed.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Loho, Christoph ; Djenadic, Ruzica ; Mundt, Paul ; Clemens, Oliver ; Hahn, Horst
Art des Eintrags: Bibliographie
Titel: On processing-structure-property relations and high ionic conductivity in garnet-type Li 5 La 3 Ta 2 O 12 solid electrolyte thin films grown by CO 2 -laser assisted CVD
Sprache: Englisch
Publikationsjahr: 15 Dezember 2017
Verlag: Elsevier Science Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Solid State Ionics
Jahrgang/Volume einer Zeitschrift: 313
DOI: 10.1016/j.ssi.2017.11.005
URL / URN: https://doi.org/10.1016/j.ssi.2017.11.005
Kurzbeschreibung (Abstract):

This study reports on the optimization of garnet-type Li-ion conducting Li5La3Ta2O12 (LLTaO) solid electrolyte thin film growth by CO2-laser assisted chemical vapor deposition (LA-CVD) and the films' detailed structural as well as electrochemical characterization. By adapting the LA-CVD process parameters, high quality LLTaO films with tailored microstructures are successfully grown, which allows to correlate the films' microstructure and phase composition with their electrochemical performance. Explicitly, the influence of grain boundaries on the ionic conductivity is studied, and possible strategies to lower the grain boundary resistance are given. As deposited LLTaO films show a total ionic conductivity of 7.8·10− 6 S·cm− 1 at 298 K (activation energy of 0.66 eV). By applying a post-annealing treatment the total ionic conductivity is improved up to 3.8·10− 5 S·cm− 1 at 298 K (activation energy of 0.52 eV). This is among the highest ionic conductivities reported for Li-ion conducting garnet-type thin films so far. A better suitability of garnet-type Li5La3Ta2O12 films for fundamental research as well as for application in all-solid-state thin film lithium ion batteries compared to commonly investigated Li7La3Zr2O12 films is proposed and discussed.

Freie Schlagworte: Garnet-type Li5La3Ta2O12, Thin film, Solid electrolyte, Ionic conductivity, All-solid-state lithium ion battery, Chemical vapor deposition
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Elektronische Materialeigenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialdesign durch Synthese
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Gemeinschaftslabor Nanomaterialien
Hinterlegungsdatum: 12 Dez 2018 09:15
Letzte Änderung: 12 Dez 2018 09:15
PPN:
Sponsoren: The authors gratefully acknowledge a major equipment grant “Competence South – Electrochemistry for Electromobility” from the Federal Ministry of Education and Research (contract no. 6091/89161/03KP801)., Further support for an equipment grant by the State of Hesse is appreciated., CL, RD and HH acknowledge the financial support by the Portfolio project “Electrochemical storage in systems” provided by Helmholtz Association., OC gratefully acknowledges support from the German Research Foundation within an Emmy Noether Research Fellowship (grant no. CL551/2-1).
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen